

Humboldt Bay Municipal Water District Korblex Reservoirs Seismic Retrofit Bid Addendum #2

The purpose of this Addendum is to modify the Contract Documents for the subject project. This Addendum shall become part of said Contract Documents.

Bidders shall acknowledge receipt of this Addendum in their bid proposal.

This Addendum addresses the following items and questions:

- 1. The sign-in sheet from the pre-bid meeting has been attached.
- 2. See the clouded modifications on the attached S-502.
- 3. Specification 31 62 99 (Helical Pile Foundation) shall be replaced in its entirety with the attached revised version of the specification.
- 4. The attached structural calculations that were used for the design of the project have been provided for reference.
- 5. The following italicized section of the Advertisement for Bids:

Each coating contractor or subcontractor shall submit a Qualifications Statement as a part of their bid, which shall include the following:

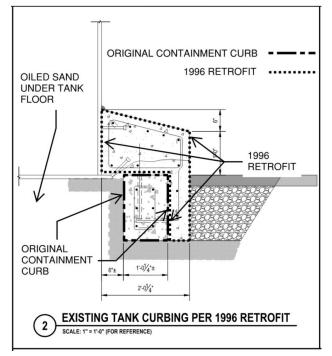
- 1. Copy of California Contractor's license
- 2. Department of Industrial Relations registration number
- 3. List of a minimum of three completed projects over the last ten years of similar size and complexity to the coating portion of this work. Include the following for each project:
 - a. Project name and location.
 - b. Name of owner with contact number.
 - c. Name of prime contractor with contact number.
 - d. Name of engineer with contact number.
 - e. Name of coating manufacturer with contact number.
 - f. Approximate area (square footage) of coatings applied.
 - g. Date of completion.

shall be stricken and replaced in its entirety with the following italicized language:

Each coating contractor or subcontractor shall submit a Qualifications Statement as a part of their bid, which shall include the following:

- 1. Copy of California Contractor's license.
- 2. Department of Industrial Relations registration number.
- 3. Written certification that each applicator performing Work on the projects is trained and qualified to perform the Work.
- 4. Written certification from the Contractor that they are qualified to apply the coating system specified.
- 5. Submit list of a minimum of three (3) completed projects over the last 5 years of similar size and complexity to this Work OR written certification from the Coating Manufacturer that the Coating Contractor is pre-qualified and pre-approved to apply the Manufacturer's products. Include for each project (if applicable):
 - a. Project name and location
 - b. Name of owner with contact number
 - c. Name of contractor with contact number
 - d. Name of engineer with contact number
 - e. Name of coating manufacturer with contact number
 - f. Approximate area (square footage) of coatings applied.
 - g. Date of completion.

- 6. Are the tank shells in sufficient condition to sandblast?
 - a. Based on recent steel thickness readings of the shells at each tank, it is assumed that the steel shells for both tanks have retained most of their original thicknesses and are in sufficient condition for sandblasting.
- 7. Will the Contractor be required to provide temporary containment during sandblasting operations due to the presence of lead?
 - a. A Limited Hazardous Materials Survey Report for the site was included as Appendix B to the specifications. The Contractor shall review the lead sampling results summarized in this report and comply with all applicable regulations including, but not limited to, those noted in Specification 02 83 00 (Removal and Disposal of Material Containing Lead).
- 8. May the Contractor cut and temporarily remove a section of the 2 MG tank shell to allow for access, removal / replacement of baffles, and other activities that would benefit from having a larger opening in the side of the tank than currently exists?
 - a. The Contractor may cut up to a 10-foot by 11-foot opening in the tank shell. If the Contractor elects to proceed with this option, the removed section of steel shall be retained onsite and replaced prior to project completion with full penetration welds. The weld design shall be signed and stamped by a licensed Civil Engineer registered in the State of California and submitted to the Engineer of Record for approval prior to removing the section of tank shell. The replaced section shall be prepared and coated after replacement, and the designed steel reinforcing ring shall be installed outside the replaced section after the section is replaced.
- 9. May the Contractor propose an alternative retrofit design solution for the 1 MG tank foundation in lieu of the current anchor chair and helical screw anchor design?
 - a. The 1 MG tank does not meet current seismic requirements for overturning. The purpose of the designed tank foundation retrofits, including anchor chairs, helical screw anchors, and cast-in-drilled hole (CIDH) piles is to provide sufficient resistance to overturning based on current seismic requirements. This includes design criteria as prescribed in AWWA D100-11 and other design criteria noted in the Sheet General Notes section of Sheet S-001.


The design as shown in the Drawings and described in the Specifications meets all necessary requirements. The Contractor may propose an alternative retrofit design solution after award of the project that the design and associated calculations meet the project design criteria noted above and are signed and stamped by a licensed Civil Engineer registered in the State of California. Furthermore, the design footprint shall not exceed the plan view footprint of the existing above-ground 1996 retrofit concrete curb around the tank.

If the Contractor elects to proceed with this process, a foundation retrofit design submittal shall be provided to the Engineer of Record for review and approval after contract award. The submittal shall show the proposed design and demonstrate that the proposed design meets the requirements outlined above. No additional payment shall be made for any design, construction, or any other work the Contractor elects to perform associated with implementing an alternative retrofit design solution. If a Bidder plans to implement an alternative retrofit design solution, their bid shall account for all design, construction, and other work required to execute the alternative solution. If the Engineer of Record determines that the Contractor's proposed design does not adequately demonstrate that it meets the criteria prescribed in AWWA D100-11 or other design criteria noted in the Sheet General Notes section of Sheet S-001, the Contractor shall construct the project as currently designed without any additional payment.

- 10. Clarification of the construction sequencing for installing the foundation retrofit at the 1 MG tank:
 - a. As shown on Detail 2/S-502 (with additional detail provided in the image below in this Addendum), there is an existing concrete containment curb underground adjacent to the tank. The containment curb was installed during the original tank construction in 1965, and its purpose is to hold in the oiled sand that is under the tank floor. Additionally, a partially above ground, partially below ground concrete retrofit around the tank was installed in 1996.

Detail 1/S-502 shows a new containment curb to be installed underground outside the existing containment curb and retrofit. The construction sequencing notes on Detail 1/S-502 note that the new containment curb shall be installed prior to any other demolition. The reason for this is that new containment of the oiled sand must be in place prior to compromising the integrity of the existing containment. However, if the Contractor implements an approved alternative design solution for meeting the design criteria (see #9 above) without negating the effectiveness of the existing containment curb, then a new containment curb would not be required.

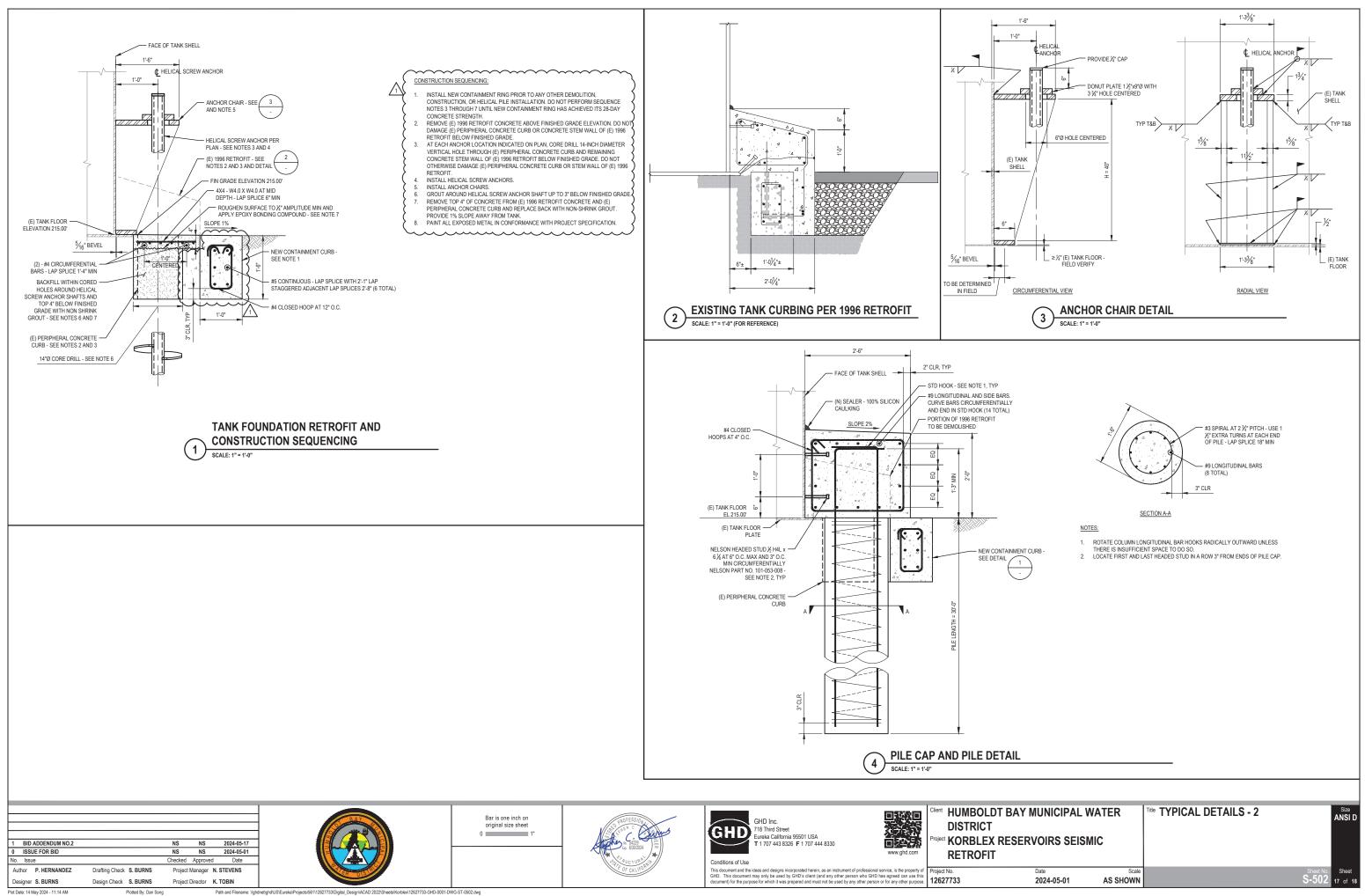
Note that the current 1996 seismic retrofit will no longer be required after implementation of the retrofit design as shown in the Drawings. Construction Sequencing Note 2 on Detail 1/S-502 notes that the existing retrofit shall be removed above finished grade elevation in its entirety, but that the existing underground concrete shall not be damaged. If the Contractor proposes an approved alternative design solution that incorporates leaving the existing retrofit intact, then it shall be allowed.

11. The 2 MG tank has existing side vents at the top of the top tank shell ring. There are 12 vents that are approximately 24" wide by 10: tall. For original installation of the vents, the tank shell was cut out, and frames were installed on the inside and outside of the shell to bolt in the screen vents. These vents, including frames, shall all be cut out and removed by the Contractor, and new steel plates shall be welded in to cover the entire opening at each vent location. The new steel plate thickness shall match the existing thickness (anticipated to be approximately 1/4"). The steel plates shall be surface prepped and coated in accordance with the Drawings and Specifications. This work will be paid for under Bid Item 6 (Remove, Relocate, Modify, and/or Replace Miscellaneous Metal, Piping, and Electrical Items at/on Tank).

END OF ADDENDUM

5/21/2024

Date


Gut Brh______ Signature

Humboldt Bay Municipal Water District Korblex Reservoirs Seismic Retrofit Project Pre-Bid Meeting Sign-In Sheet

Date: May 9, 2024 Location: Korblex Site, Humboldt County, CA

Name	Company/Affiliation	Phone	Email
Nathan Stevens	GHD	(707) 267-2204	nathan.stevens@ghd.com
Sean Alexander	Resource Development Company	(775) 343-9714	salexander@resourcedevelopmentco.com
Mike Clifton	Unified Field Services Corporation	(925) 337-9090	mclifton124@comcast.net
Chad Johnson	Unified Field Services Corporation	(661) 805-8516	chad_johnson@ufsc.us
Mark Benzinger	Mercer-Fraser	(707) 599-6371	mbenzinger@mercerfraser.com
Casey Poff	GR Sundberg	(707) 825-6565	grs@grsinc.biz
Dale Davidsen	HBMWD	(707) 822-2918	supt@hbmwd.com

Plotted By: Dan Song	Path and Filename: \\ghdnet\ghd\US\Eureka\Projects\561\12627733\Digital_Design\ACAD 2022\Sheets\Korblex\12627733-GHD-0001-DWG-ST-

SECTION 31 62 99

HELICAL PILE FOUNDATION

PART 1 GENERAL

1.01 PURPOSE OF SPECIFICATION

A. The purpose of this specification is to detail the furnishing of all designs, materials, tools, equipment, labor and supervision, and installation techniques necessary to install Helical Piles as detailed on the drawings, including connection details. This shall include provisions for load testing that may be part of the scope of work

1.02 SCOPE OF WORK

- A. This work consists of furnishing all necessary engineering and design services (if required), supervision, labor, tools, materials, and equipment to perform all work necessary to install the Helical Piles, at the Korblex tank site for Humboldt Bay Municipal Water District (HBMWD) per the specifications described herein, and as shown on the drawings. The Contractor shall install a Helical Pile that will develop the load capacities as detailed on the drawings. This includes provisions for load testing to verify Helical Pile capacity and deflection, if part of the scope of work. The responsibilities and duties of the respective parties for this project are summarized in Table-1.
- B. For the purpose of this Section, Owner is defined as HBMWD, Structural Engineer of Record (SEOR) is defined as GHD, and Contractor is defined as the Prime Contractor or his/her Subcontractors.

	TASK	RESPONSIBLE PARTY
1	Site Investigation, Geotechnical Investigation, Site Survey, and potential work restrictions	Owner
2	Type of specification, requirement for a pre-contract testing program, and procurement method	Owner
3	Obtaining easements	Owner
4	Overall scope of work, design of the Helical Pile structure – including design loads (vertical, horizontal, etc.), pile locations, and pile spacing and orientation	Contractor/SEOR
5	Definition and qualification of safety factors	Contractor/SEOR
6	Calculation/estimation of allowable structural and/or Helical Pile movement in service (acceptance criteria)	Contractor/SEOR
7	Definition of service life (temporary – months or permanent - years) and required degree of corrosion protection based on site conditions	SEOR
8	Minimum total Helical Pile length, depth to bearing stratum	Contractor
9	Helical Pile components and details	Contractor
10	Details of corrosion protection, if required	Contractor
11	Details of pile connection to structure (e.g., for static and seismic conditions)	Contractor/SEOR

Table-1. Tasks and Responsibilities to be Allocated for Helical Pile Work

Korblex Reservoirs Seismic Retrofit

12	Preparation of Helical Pile Shop Drawings and test reports	Contractor
13	Evaluation of test results	Owner
14	Construction methods, schedule, sequencing, and coordination of work	Contractor
15	Requirements of field production control, including logging of installation torque vs. installed depth	Contractor/Owner
16	Supervision of work	Contractor/Owner
17	Long-term monitoring	Owner

1.03 QUALIFICATIONS OF THE HELICAL PILE CONTRACTOR

- A. The Helical Pile Contractor shall be experienced in performing design and construction of Helical Piles and shall furnish all materials, labor, and supervision to perform the work. The Contractor shall be trained and certified by CHANCE Civil Construction or other qualified firm in the proper methods of design and installation of Helical Piles. The Contractor shall provide names of on-site personnel materially involved with the work, including those who carry documented certification from CHANCE Civil Construction or other qualified firm. At a minimum, these personnel shall include foreman, machine operator, and project engineer/manager.
- B. The Helical Pile Contractor shall not sublet the whole or any part of the contract without the express written permission of the Owner.

1.04 DEFINITIONS

- A. A partial list follows.
 - 1. **Contractor:** The person/firm responsible for performing the Helical Pile work.
 - 2. **Coupling:** Central steel shaft connection means formed as integral part of the plain extension shaft material. For Type SS & RS Helical Piles, couplings are internal or external sleeves, or hot upset forged sockets.
 - 3. **Coupling Bolt(s):** High strength, structural steel fasteners used to connect Helical Pile segments together. For Type SS segments, the coupling bolt transfers axial load. For Type RS segments, the coupling bolts transfer both axial and torsional forces.
 - 4. **Helical Extension:** Helical Pile foundation component installed immediately following the lead or starter section, if required. This component consists of one or more helical plates welded to a central steel shaft of finite length. Function is to increase bearing area.
 - 5. **Helix Plate:** Generally round steel plate formed into a ramped spiral. The helical shape provides the means to install the helical pile, plus the plate transfers load to soil in end bearing. Helix plates are available in various diameters and thickness.
 - 6. **HELICAL PULLDOWN® Micropile:** A small diameter, soil displacement, cast-inplace Helical Pile, in which most of the applied load is resisted by the central steel shaft and steel reinforcement, if installed. Load transfer to soil is both end bearing and friction.
 - 7. **Helical Pile:** A bearing type foundation element consisting of a lead or starter section, helical extension (if so required by site conditions), plain extension section(s), and a pile cap. A.k.a. helical screw pile, screw pile, helical screw foundation.

- 8. **Installation Torque(T):** The resistance generated by a Helical Pile when installed into soil. The installation resistance is a function of the soil type, and size and shape of the various components of the Helical Pile.
- 9. **Lead Section:** The first Helical Pile foundation component installed into the soil, consisting of single or multiple helix plates welded to a central steel shaft. A.k.a. Starter Section.
- 10. **Pile Cap:** Connection means by which structural loads are transferred to the Helical Pile. The type of connection varies depending upon the requirements of the project and type of Helical Pile material used.
- 11. **Round Shaft (RS):** <u>R</u>ound steel pipe central <u>S</u>haft elements ranging in diameter from 2-7/8" to 10". A.k.a. Hollow Shaft (Type HS), Type T/C, Type PIF.
- 12. **Plain Extension:** Central steel shaft segment without helix plates. It is installed following the installation of the lead section or helical extension (if used). The segments are connected with integral couplings and bolts. Plain extensions are used to extend the helix plates beyond the specified minimum depth and into competent load bearing stratum.
- 13. **Safety Factor:** The ratio of the ultimate capacity to the working or design load used for the design of any structural element.
- 14. **Square Shaft (SS):** Solid steel, round-cornered-<u>S</u>quare central <u>S</u>haft elements ranging in size from 1-1/4" to 2-1/4". A.k.a. Type SQ.
- 15. **Torque Strength Rating:** The maximum torque energy that can be applied to the helical pile foundation during installation in soil, a.k.a. allowable, or safe torque.

1.05 ALLOWABLE TOLERANCES

- A. The tolerances quoted in this section are suggested maximums. The actual values established for a particular project will depend on the structural application.
- B. Centerline of Helical Piles shall not be more than 1.25 inches from indicated plan location.
- C. Helical Pile plumbness shall be within 1° of design alignment.
- D. Top elevation of Helical Pile shall be within +1 inch to -2 inches of the design vertical elevation.

1.06 QUALITY ASSURANCE

- A. Helical Piles shall be installed by authorized CHANCE Civil Construction certified Contractor or approved equal. These Contractors shall have satisfied the certification requirements relative to the technical aspects of the product and installation procedures as therein specified. Certification documents shall be provided upon request to the Owner or their representative.
- B. The Contractor shall employ an adequate number of skilled workers who are experienced in the necessary crafts and who are familiar with the specified requirements and methods needed for proper performance of the work of this specification.
- C. All Helical Piles shall be installed in the presence of a designated representative of the Owner unless said representative informs the Contractor otherwise. The designated representative shall have the right of access to any and all field installation records and test reports.
- D. Helical Pile components as specified therein shall be manufactured by a facility whose quality systems comply with ISO (International Organization of Standards) 9001

requirements. Certificates of Registration denoting ISO Standards Number shall be presented upon request to the Owner or their representative.

- E. Manufacturer shall provide a standard one-year warranty on materials and workmanship of the product. Any additional warranty provided by the Contractor shall be issued as an addendum to this specification.
- F. Design of Helical Piles shall be performed by an entity as required in accordance with existing local code requirements or established local practices. This design work may be performed by a licensed professional engineer, a certified CHANCE Civil Construction Contractor, or other qualified designer.

1.07 DESIGN CRITERIA

- A. Helical Piles shall be designed to meet the specified loads and acceptance criteria as shown on the drawings. The calculations and drawings required from the Contractor or Engineer shall be submitted to the Owner for review and acceptance in accordance to Section 3.1 "Construction Submittals".
- B. The allowable working load on the Helical Piles shall not exceed the following values:
 - 1. For compression loads:

Where: Pallowc = allowable working load in compression (kip)

- f_{yshaft} = minimum yield strength of central steel shaft (ksi) A_{shaft} = area of central steel shaft (with corrosion allowance if required) (in.²)
- 2. For tension loads:

$$P_{allowt} = S_{ut} / FS$$

- C. The ultimate structural capacity shall be determined as:
 - 1. For compression loads:

- 2. For tension loads:

$$P_{ultt} = S_{ut}$$

- D. The overall length and installed torque of a Helical Pile shall be specified such that the required in-soil capacity is developed by end-bearing on the helix plate(s) in an appropriate strata(s).
- E. It is recommended that the theoretical end-bearing capacity of the helix plates be determined using HeliCAP® Engineering Software or equal commercially available software. The required soil parameters (c, ϕ , γ , or N-values) for use with HeliCAP® or equal shall be provided in the geotechnical reports. The Owner shall determine the allowable response to axial loads.
- F. Lateral Load and Bending: Where Helical Piles are subjected to lateral or base shear loads as indicated on the plans, the bending moment from said loads shall be determined using lateral load analysis program such as LPILE or equal commercially available software. The required soil parameters (c, ϕ , γ , and k_s) for use with LPILE or equal shall be provided in the geotechnical reports. The Owner shall determine the allowable response to lateral loads. The combined bending and axial load factor of safety of the Helical Pile shall be as determined by the Owner.
- G. Critical Buckling Load: Where Helical Piles are installed into low strength soil, the critical buckling load shall be determined using lateral load analysis program such as LPILE or equal commercially available software, or various other methods. The required soil parameters (c, ϕ , γ , and k_s) for use with LPILE or equal shall be provided in the geotechnical reports.
- Expansive Soils: Helical Pile used in areas where expansive soils are present may require the use of special construction methods to mitigate possible shrink/swell effects. Helical Pile shafts should be isolated from the concrete footing if said footing is in contact with the expansive soil.
- I. Down-Drag/Negative Skin Friction: Type SS and Type RS Helical Piles are slender shaft foundation elements and are not practically affected by down-drag/negative skin friction. If Helical Piles with central steel shafts >4" in diameter are used in areas where compressible or decomposing soils overlie bearing stratum, or where expansive or frozen soils can cause pile jacking, Helical Pile shafts should be provided with a no-bond zone along a specified length to prevent load transfer that may adversely affect pile capacity. Alternately, Helical Piles can be provided with sufficient axial load capacity to resist down drag/negative skin friction forces.
- J. The Helical Pile attachment (pile cap) shall distribute the design load (DL) to the concrete foundation such that the concrete bearing stress does not exceed those in the ACI Building Code and the stresses in the steel plates/welds does not exceed AISC allowable stresses for steel members.
- K. Corrosion Protection
 - 1. **Structure Type:** Permanent
 - 2. Service Life: 50 years
 - a. Corrosion protection requirements for the various Helical Pile elements shall be provided meeting the requirements of Table-2 in the Appendix for:
 - 3. Soil: Aggressive

TABLE-2

	CO	RROSION PROTECT	ION	
LOADING	TEN	SION	COMPR	ESSION
SOIL	AGGRESSIVE ¹	NON- AGGRESSIVE	AGGRESSIVE ¹	NON- AGGRESSIVE
CENTRAL STEEL SHAFT (Lead Section)	 a. Galvanization OR b. Minimum 1/8" corrosion loss on outside 	 a. Bare steel OR b. Galvanization OR c. Minimum 1/8" corrosion loss on outside 	 a. Galvanization OR b. Minimum 1/8" corrosion loss on outside 	a. Bare steel OR b. Galvanization OR c. Minimum 1/8" corrosion loss on outside
CENTRAL STEEL SHAFT (Extension Section)	 a. Galvanization OR b. Epoxy coating OR c. a. or b. + Grout cover² The Specifier may elect to use a grout case. 	a. Bare steel OR b. Galvanization OR c. Epoxy coating	 a. Galvanization OR b. Epoxy coating OR c. a. or b. + Grout cover² The Specifier may elect to use a grout case. 	a. Bare steel OR b. Galvanization OR c. Epoxy coating
STEEL PILE CAP	a. Galvanization OR b. Epoxy coating	d. Bare steel OR e. Galvanization OR f. Epoxy coating	c. Galvanization OR d. Epoxy coating	g. Bare steel OR h. Galvanization OR i. Epoxy coating

NOTES:

Lettered items are options.

For guidance on aggressiveness classification, see Table-2 of the Appendix.

1. Corrosion protection shall extend 15'-0 below corrosive material.

 Minimum 1" in soil. If protective coatings (galvanization, epoxy) are provided in compression, minimum cover may be 0.25" in soil. Grout column can be installed using the HELICAL PULLDOWN[®] Micropile method.

1.08 GROUND CONDITIONS

- A. The Geotechnical Report, including logs of soil borings as shown on the boring location plan, shall be considered to be representative of the in-situ subsurface conditions likely to be encountered on the project site. Said Geotechnical Report shall be the used as the basis for Helical Pile design using generally accepted engineering judgement and methods.
- B. The Geotechnical Report shall be provided for purposes of bidding. If during Helical Pile installation, subsurface conditions of a type and location are encountered of a frequency that were not reported, inferred and/or expected at the time of preparation of the bid, the additional costs required to overcome such conditions shall be considered as extras to be paid for.

PART 2 REFERENCED CODES AND STANDARDS

Standards listed by reference, including revisions by issuing authority, form a part of this specification section to the extent indicated. Standards listed are identified by issuing authority, authority abbreviation, designation number, title, or other designation established by issuing authority. Standards subsequently referenced herein are referred to by issuing authority abbreviation and standard designation. In case of conflict, the particular requirements of this specification shall prevail. The latest publication as of the issue of this specification shall govern, unless indicated otherwise.

2.01 AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM):

- A. ASTM A29/A29M Steel Bars, Carbon and Alloy, Hot-Wrought and Cold Finished.
- B. ASTM A36/A36M Structural Steel.
- C. ASTM A53 Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless.
- D. ASTM A153 Zinc Coating (Hot Dip) on Iron and Steel Hardware.
- E. ASTM A252 Welded and Seamless Steel Pipe Piles.
- F. ASTM A775 Electrostatic Epoxy Coating
- G. ASTM A193/A193M Alloy-Steel and Stainless Steel Bolting Materials for High Temperature Service.
- H. ASTM A320/A320M Alloy-Steel Bolting Materials for Low Temperature Service.
- I. ASTM A325 Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength.
- J. ASTM A500 Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes.
- K. ASTM A513 Standard Specification for Electric Resistance Welded Carbon and Alloy Steel Mechanical Tubing.
- L. ASTM A536 Standard Specifications for Ductile Iron Castings
- M. ASTM A572 HSLA Columbium-Vanadium Steels of Structural Quality.
- N. ASTM A618 Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing.
- O. ASTM A656 Hot-Rolled Structural Steel, High-Strength Low-Alloy Plate with Improved Formability.
- P. ASTM A958 Standard Specification for Steel Castings, Carbon, and Alloy, with Tensile Requirements, Chemical Requirements Similar to Wrought Grades.
- Q. ASTM A1018 Steel, Sheet and Strip, Heavy Thickness Coils, Hot Rolled, Carbon, Structural, High-Strength Low-Alloy, Columbium or Vanadium, and High-Strength Low-Alloy with Improved Formability.
- R. ASTM D1143 Method of Testing Piles Under Static Axial Compressive Load.
- S. ASTM D3689 Method of Testing Individual Piles Under Static Axial Tensile Load.

2.02 AMERICAN WELDING SOCIETY (AWS):

- A. AWS D1.1 Structural Welding Code Steel.
- B. AWS D1.2 Structural Welding Code Reinforcing Steel.

2.03 AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE):

A. ASCE 20-96 Standard Guidelines for the Design and Installation of Pile Foundations.

2.04 DEEP FOUNDATIONS INSTITUTE (DFI):

A. Guide to Drafting a Specification for High Capacity Drilled and Grouted Micropiles for Structural Support, 1st Edition, Copyright 2001 by the Deep Foundation Institute (DFI).

2.05 SOCIETY OF AUTOMOTIVE ENGINEERS (SAE):

A. SAE J429 Mechanical and Material Requirements for Externally Threaded Fasteners.

PART 3 SUBMITTALS

3.01 CONSTRUCTION SUBMITTALS

- A. The Contractor or Engineer shall prepare and submit to the Owner, for review and approval, working drawings and design calculations for the Helical Piles intended for use at least 14 calendar days prior to planned start of construction (but note also Paragraph 3.1.8). All submittals shall be signed and sealed by a Registered Professional Engineer currently licensed in the State of California.
- B. The Contractor shall submit a detailed description of the construction procedures proposed for use to the Owner for review. This shall include a list of major equipment to be used.
- C. The Working Drawings shall include the following:
 - a. Helical Pile number, location and pattern by assigned identification number
 - b. Helical Pile design load
 - c. Type and size of central steel shaft
 - d. Helix configuration (number and diameter of helix plates)
 - e. Minimum effective installation torque
 - f. Minimum overall length
 - g. Inclination of Helical Pile
 - h. Cut-off elevation
 - i. Helical Pile attachment to structure relative to grade beam, column pad, pile cap, etc.
- D. The Contractor shall submit shop drawings for all Helical Pile components, including corrosion protection and pile top attachment to the Owner for review and approval. This includes Helical Pile lead/starter and extension section identification (manufacturer's catalog numbers).
- E. If required, the Contractor shall submit certified mill test reports for the central steel shaft, as the material is delivered, to the Owner for record purposes. The ultimate strength, yield strength, % elongation, and chemistry composition shall be provided.
- F. The Contractor shall submit plans for pre-production (optional) and production testing for the Helical Piles to the Owner for review and acceptance prior to beginning load tests. The purpose of the test is to determine the load versus displacement response of the Helical Pile and provide an estimation of ultimate capacity.

- G. The Contractor shall submit to the Owner copies of calibration reports for each torque indicator or torque motor, and all load test equipment to be used on the project. The calibration tests shall have been performed within forty five (45) working days of the date submitted. Helical Pile installation and testing shall not proceed until the Owner has received the calibration reports. These calibration reports shall include, but are not limited to, the following information:
 - a. Name of project and Contractor
 - b. Name of testing agency
 - c. Identification (serial number) of device calibrated
 - d. Description of calibrated testing equipment
 - e. Date of calibration
 - f. Calibration data
- H. Work shall not begin until all the submittals have been received and approved by the Owner. The Contractor shall allow the Owner a reasonable time to review, comment, and return the submittal package after a complete set has been received. All costs associated with incomplete or unacceptable submittals shall be the responsibility of the Contractor.

3.02 INSTALLATION RECORDS

- A. The Contractor shall provide the Owner copies of Helical Pile installation records within 24 hours after each installation is completed. Records shall be prepared in accordance with the specified division of responsibilities as noted in Table-1. Formal copies shall be submitted on a weekly basis. These installation records shall include, but are not limited to, the following information.
 - 1. Name of project and Contractor
 - 2. Name of Contractor's supervisor during installation
 - 3. Date and time of installation
 - 4. Name and model of installation equipment
 - 5. Type of torque indicator used
 - 6. Location of Helical Pile by assigned identification number
 - Actual Helical Pile type and configuration including lead section (number and size of helix plates), number and type of extension sections (manufacturer's SKU numbers)
 - 8. Helical Pile installation duration and observations
 - 9. Total length of installed Helical Pile
 - 10. Cut-off elevation
 - 11. Inclination of Helical Pile
 - 12. Installation torque at one-foot intervals for the final 10 feet
 - 13. Comments pertaining to interruptions, obstructions, or other relevant information
 - 14. Rated load capacities

3.03 CLOSEOUT SUBMITTALS

A. Warranty: Warranty documents specified herein

- 1. Project Warranty: Refer to Conditions of the Contract for project warranty provisions
 - a. Warranty Period: (*Specify Term*) years commencing on date of Substantial Completion
- Manufacturer's Warranty: Submit, for Owner's Acceptance, manufacturer's standard warranty document executed by authorized company official. Manufacturer's warranty is in addition to, and not a limitation of, other rights the Owner may have under Contract Document.

PART 4 PRODUCTS AND MATERIALS

- 4.01 CENTRAL STEEL SHAFT:
 - A. The central steel shaft, consisting of lead sections, helical extensions, and plain extensions, shall be Type SS (Square Shaft) or RS (Round Shaft) or a combination of the two (SS to RS Combo Pile) as manufactured by CHANCE Civil Construction (Centralia and Independence, MO) or equal.
 - 1. SS5 1-1/2" Material: Shall be hot rolled Round-Cornered-Square (RCS) solid steel bars meeting dimensional and workmanship requirements of ASTM A29. The bar shall be modified medium carbon steel grade (similar to AISI 1044) with improved strength due to fine grain size.
 - a. Torque strength rating = 5,500 ft-lb
 - b. Minimum yield strength = 70 ksi
 - SS125 1-1/4"; SS1375 1-3/8"; SS150 1-1/2"; SS175 1-3/4; SS200 2"; SS225 2-1/4" Material: Shall be hot rolled Round-Cornered-Square (RCS) solid steel bars meeting the dimensional and workmanship requirements of ASTM A29. The bar shall be High Strength Low Alloy (HSLA), low to medium carbon steel grade with improved strength due to fine grain size.
 - a. Torque strength rating: SS125 = 4,000 ft-lb; SS1375 = 5,500 ft-lb; SS150 = 7,000 ft-lb; SS175 = 11,000 ft-lb; SS200 = 16,000 ft-lb; SS225 = 23,000 ft-lb
 - b. Minimum yield strength = 90 ksi
 - 3. *Type RS2875 2-7/8" OD Material*: Structural steel tube or pipe, welded or seamless, in compliance with ASTM A500 or A513. Wall thickness is 0.165", 0.203" or 0.262".
 - a. Torque strength rating: RS2875.165 = 4,500 ft-lb; RS2875.203 = 5,500 ft-lb; RS2875.262 = 7,500 ft-lb.
 - b. Minimum yield strength = 50 ksi
 - 4. *Type RS3500 3-1/2" OD Material*: Shall be structural steel tube or pipe, seamless or straight-seam welded, per ASTM A53, A252, ASTM A500, or ASTM A618. Wall thickness is 0.300" (schedule 80).
 - a. Torque strength rating = 13,000 ft-lb
 - b. Minimum yield strength = 50 ksi
 - 5. *Type RS4500 4-1/2" OD Material*: Shall be structural steel tube or pipe, seamless or straight-seam welded, per ASTM A500 or A513. Wall thickness is 0.337" (schedule 80).
 - a. Torque strength rating = 23,000 ft-lb

- b. Minimum yield strength = 50 ksi
- 6. *SS to RS2875 Combo Pile Material*: Shall be Type SS and RS2875 material as described above with a welded adapter for the transition from SS to RS2875.
- 7. *SS to RS3500 Combo Pile Material*: Shall be Type SS and RS3500 material as described above with a welded adapter for the transition from SS to RS3500.
- 8. *SS to RS4500 Combo Pile Material:* Shall be Type SS and RS4500 material as described above with a welded adapter for the transition from SS to RS4500.

4.02 HELIX BEARING PLATE:

- A. Shall be hot rolled carbon steel sheet, strip, or plate formed on matching metal dies to true helical shape and uniform pitch. Bearing plate material shall conform to the following ASTM specifications.
 - 1. SS5 Material: Per ASTM A572, or A1018, or A656 with minimum yield strength of 50 ksi. Plate thickness is 3/8".
 - 2. SS125 and SS1375 Material: Per ASTM A572 with minimum yield strength of 50 ksi. Plate thickness is 3/8" or ½".
 - 3. SS150 and SS175 Material: Per ASTM A656 or A1018 with minimum yield strength of 80 ksi. Plate thickness is 3/8" or ½".
 - 4. SS200 and SS225 Material: Per ASTM A656 or A1018 with minimum yield strength of 80 ksi. Plate thickness is ½".
 - 5. RS2875 Material: Per ASTM A36, or A572, with minimum yield strength of 36 ksi. Plate thickness is 3/8" or $\frac{1}{2}$ ".
 - 6. *RS3500 Material*: Per ASTM A36, or A572, or A1018, or A656 depending on helix diameter, per the minimum yield strength requirements cited above. Plate thickness is 3/8" or 1/2".
 - 7. *RS4500 Material*: Per ASTM A572 with minimum yield strength of 50 ksi. Plate thickness is ½".

4.03 BOLTS:

- A. The size and type of bolts used to connect the central steel shaft sections together shall conform to the following ASTM specifications.
 - 1. SS125 1-1/4" Material: 5/8" diameter bolt (2 per coupling) per SAE J429 Grade 8.
 - 2. SS1375 1-3/8" Material: ³/₄" diameter bolt (2 per coupling) per SAE J429 Grade 8.
 - 3. SS5 and SS150 1-1/2" Material: ³/₄" diameter bolt per ASTM A320 Grade L7 or ASTM A325.
 - 4. SS175 1-3/4" Material: 7/8" diameter bolt per ASTM A193 Grade B7.
 - 5. SS200 2" Material: 1-1/8" diameter bolt per ASTM A193 Grade B7.
 - 6. SS225 2-1/4" Material: 1-1/4" diameter bolt per ASTM A193 Grade B7.
 - 7. RS2875 2-7/8" OD Material: ³/₄" diameter bolts (2 or 4 per coupling) per SAE J429 Grade 5 or 8.
 - RS3500 3-1/2" OD Material: ³/₄" diameter bolts (3 or 4 per coupling) per SAE J429 Grade 5 or 8.

9. RS4500 4-1/2" OD Material: ³/₄" diameter bolts (4 per coupling) per SAE J429 Grade 8.

4.04 COUPLINGS

- A. For type SS5, SS150, SS175, SS200, and SS225 material, the coupling shall be formed as an integral part of the plain and helical extension material as hot upset forged sockets. For Type SS125 and SS1375 material, the coupling shall be a cast steel sleeve with two holes for connecting shaft sections together.
- B. For Type RS2875, RS3500, and RS4500 material, the couplings shall either be formed as an integral part of the plain and helical extension material as hot forge expanded sockets, or as internal sleeve wrought steel connectors. The steel connectors can be either tubing or solid steel bar with holes for connecting shaft sections together.
- 4.05 PLATES, SHAPES, OR PILE CAPS:
 - A. Depending on the application, the pile cap shall be a welded assembly consisting of structural steel plates and shapes designed to fit the pile and transfer the applied load. Structural steel plates and shapes for HELICAL PILE top attachments shall conform to ASTM A36 or ASTM A572 Grade 50.

4.06 CORROSION PROTECTION (OPTIONAL):

- Epoxy Coating: If used, the thickness of coating applied electrostatically to the central steel shaft shall be 7-12 mils. Epoxy coating shall be in accordance with ASTM A775. Bend test requirements are not required. Coupling bolts and nuts are not required to be epoxy coated.
- B. Galvanization: If used, all Hubbell Power Systems, Inc./A. B. Chance Type SS material or equal shall be hot-dipped galvanized in accordance with ASTM A153 after fabrication. All Hubbell Power Systems, Inc./A. B. Chance Type RS material or equal shall be hot-dipped galvanized in accordance with ASTM A153 or A123 as specified after fabrication.

PART 5 EXECUTION

5.01 SITE CONDITIONS

- A. Prior to commencing Helical Pile installation, the Contractor shall inspect the work of all other trades and verify that all said work is completed to the point where Helical Piles may commence without restriction.
- B. The Contractor shall verify that all Helical Piles may be installed in accordance with all pertinent codes and regulations regarding such items as underground obstructions, right-of-way limitations, utilities, etc.
- C. In the event of a discrepancy, the Contractor shall notify the Owner. The Contractor shall not proceed with Helical Pile installation in areas of discrepancies until said discrepancies have been resolved. All costs associated with unresolved discrepancies shall be the responsibility of the Owner.

5.02 INSTALLATION EQUIPMENT

A. Shall be rotary type, hydraulic power driven torque motor with clockwise and counterclockwise rotation capabilities. The torque motor shall be capable of continuous adjustment to revolutions per minute (RPM's) during installation. Percussion drilling equipment shall not be permitted. The torque motor shall have torque capacity 15% greater than the torsional strength rating of the central steel shaft to be installed. B. Equipment shall be capable of applying adequate down pressure (crowd) and torque simultaneously to suit project soil conditions and load requirements. The equipment shall be capable of continuous position adjustment to maintain proper Helical Pile alignment.

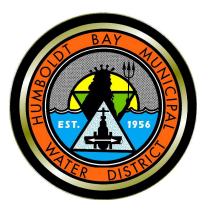
5.03 INSTALLTION TOOLING

- A. Shall consist of a Kelly Bar Adapter (KBA) and Type SS or RS drive tools as manufactured by CHANCE Civil Construction or equal and used in accordance with the manufacturers written installation instructions.
- B. A torque indicator shall be used during Helical Pile installation. The torque indicator can be an integral part of the installation equipment or externally mounted in-line with the installation tooling.
 - 1. Shall be capable of providing continuous measurement of applied torque throughout the installation.
 - 2. Shall be capable of torque measurements in increments of at least 500 ft-lb
 - 3. Shall be calibrated prior to pre-production testing or start of work. Torque indicators which are an integral part of the installation equipment, shall be calibrated on-site. Torque indicators which are mounted in-line with the installation tooling, shall be calibrated either on-site or at an appropriately equipped test facility. Indicators that measure torque as a function of hydraulic pressure shall be calibrated at normal operating temperatures.
 - 4. Shall be re-calibrated, if in the opinion of the Owner and/or Contractor reasonable doubt exists as to the accuracy of the torque measurements.

5.04 INSTALLATION PROCEDURES

- A. <u>Central Steel Shaft:</u> (Lead and Extension Sections)
 - 1. The Helical Pile installation technique shall be such that it is consistent with the geotechnical, logistical, environmental, and load carrying conditions of the project.
 - 2. The lead section shall be positioned at the location as shown on the working drawings. Battered Helical Piles can be positioned perpendicular to the ground to assist in initial advancement into the soil before the required batter angle shall be established. The Helical Pile sections shall be engaged and advanced into the soil in a smooth, continuous manner at a rate of rotation of 5 to 20 RPM's. Extension sections shall be provided to obtain the required minimum overall length and installation torque as shown on the working drawings. Connect sections together using coupling bolt(s) and nut torqued to 40 ft-lb.
 - 3. Sufficient down pressure shall be applied to uniformly advance the Helical Pile sections approximately 3 inches per revolution. The rate of rotation and magnitude of down pressure shall be adjusted for different soil conditions and depths.

5.05 TERMINATION CRITERIA


- A. The torque as measured during the installation shall not exceed the torsional strength rating of the central steel shaft.
- B. The minimum installation torque and minimum overall length criteria as shown on the working drawings shall be satisfied prior to terminating the Helical Pile installation.
- C. If the torsional strength rating of the central steel shaft and/or installation equipment has been reached prior to achieving the minimum overall length required, the Contractor shall have the following options:

- 1. Terminate the installation at the depth obtained subject to the review and acceptance of the Owner, or:
- 2. Remove the existing Helical Pile and install a new one with fewer and/or smaller diameter helix plates. The new helix configuration shall be subject to review and acceptance of the Owner. If re-installing in the same location, the top-most helix of the new Helical Pile shall be terminated at least (3) three feet beyond the terminating depth of the original Helical Pile.
- D. If the minimum installation torque as shown on the working drawings is not achieved at the minimum overall length, and there is no maximum length constraint, the Contractor shall have the following option:
 - 1. Remove the existing Helical Pile and install a new one with additional and/or larger diameter helix plates. The new helix configuration shall be subject to review and acceptance of the Owner. The top-most helix of the new Helical Pile shall be terminated at least (3) three feet beyond the terminating depth of the original Helical Pile.
- E. If the Helical Pile is refused or deflected by a subsurface obstruction, the installation shall be terminated and the pile removed. The obstruction shall be removed, if feasible, and the Helical Pile re-installed. If the obstruction can't be removed, the Helical Pile shall be installed at an adjacent location, subject to review and acceptance of the Owner.
- F. If the torsional strength rating of the central steel shaft and/or installation equipment has been reached prior to proper positioning of the last plain extension section relative to the final elevation, the Contractor may remove the last plain extension and replace it with a shorter length extension. If it is not feasible to remove the last plain extension, the Contractor may cut said extension shaft to the correct elevation. The Contractor shall not reverse (back-out) the Helical Pile to facilitate extension removal.
- G. The average torque for the last three feet of penetration shall be used as the basis of comparison with the minimum installation torque as shown on the working drawings. The average torque shall be defined as the average of the last three readings recorded at one-foot intervals.

END OF SECTION

STRUCTURAL CALCULATIONS Korblex Reservoirs Seismic Retrofit Project

For

HUMBOLDT BAY MUNICIPAL WATER DISTRICT 828 7th Street, Eureka, CA 95501

APRIL 2024

Prepared by

2235 Mercury Way Suite 150, Santa Rosa, CA 95407 (707) 523-1010

Table of Contents

Design Criteria	1
1 MG Korblex Tank	
Existing Tank Evaluation	2
Retrofit Tank Calculations	7
Helical Screw Anchor Design Loads	12
Anchor Chair Design	19
Concrete Pile Cap Design	
CIDH Pile Section Design	20
CIDH Pile Length	29
Pile Cap Beam Design	31
Headed Stud Design	33
2 MG Korblex Tank	
Existing Tank Evaluation	38
Bottom Tank Shell Supplemental Tension Reinforcement	
Retrofit Calculations	45
Reinforcment Design at Openings	50

Design Criteria

AWWA D100-11

ACI 318-14

•	12627733											
ann. P	MG Kor							EVA	ALUATION CALCULATIONS			
			rence the de	sign and	procedures	s outlined	in AWWA					
TEEL TANK						Sector Ini-	120010-11	Section 25	car an analytic and sold in the second			
Seometry and	Constru	ction					1967		Year Designed			
D≖	70.0	1	Tank Diame	ler		E =	0.85	-	Joint Efficiency			
R =	35.0	ft	Tank Radius	;		DMT >=	20	۰F	Design Metal Temp [Ch 14]			
Ht =	40.0	ft	Tank Shell F	leight		G =	1.00	-	Specific Gravity			
H≖	37.0	ft	Liquid Heigh	t, MOL		TCL =	37.0		Top Capacity Level, overflow			
Op Cap =	1.1	MG	Nominal stor	rage capa	acity	$\gamma_L =$	62.4	pcf	Unit Weight			
Max Cap =	1.1	MG	Nominal stor	rage capa	acity	FB =	3.0	ft	Available Freeboard			
W _T =	8,885	kips	Weight of liq	uid ("con	ntents"); Op	erating le	vel					
Seismic												
Lat =	40.907	¢	Latitude (for	USGS D)esion Man	1						
Long =			Longitude (fe									
Site =	D		Site Class, A			. /						
S ₁ =	1.07	g	Mapped MC		•	, 1-sec. A	/ USGS	S				
S _{DS} =	2.09	-	Spectral Acc		-							
						•			(upped 7.40)			
S _{D1} =	1.22	-	Spectral Acc					363	(used 7-10)			
T _L =	8.0	S	Long period		n period, A	SCE 7-16	/USGS					
Group =			Seismic Use	•								
I _E =	1.50		Seismic Use	Factor					(Table 21)			
Anchor =	SELF		Self-Anchori	ng or Me	echanical							
Vind												
V _{3s} =	85	mph	Wind Veloci	N 3.com		SCE 7-10	וו		G = 1.00 Gust Factor			
* 3s —		mpn	Roof Type	y, 0-360	ona gust [A	30L /- IC	21 1					
Cf =	Angle 0.60		Wind Drag F	actor la	teral				[Table 2]			
Cf _R =	-0.5		Wind Drag F			n") at roo	faverado					
Kz =	-0.5					a jai 100	i, average		[Table 3]			
KZ = Pw =	18.0		Velocity pres Wind lateral			al (I=1 15)			[Table 3] [Eq 3-1]			
Pw =	-12.3		Wind roof pr	•		• •						
				casure, r		1-1.137						
SUMMARY OF		spall and a second	Co. of the state o	00000027			1692 853 857					
tr =	0.250		Roof PL thic			Wrp =	39,286		Roof plate (nearly flat)			
tk =	0.250		Knuckle PL		(1)	Wrk =		bs	Knuckle plate (6" radius)			
pr =		psf	Roof framing		(est)	Wrf =			Roof framing (estimate)			
tf =	0.250	IN	Floor PL thic	ж		Wr =	61,592	IDS	Total roof steel wt			
						Wf =	39,286		Floor steel wt			
Shell (Wall) W	eights											
-			Mr. Fr.				24					
Ring	Disa 11	Shell PL			Ring Ht		(Ring Ht)					
No.	Ring Ht	USED	per Ring	Xi	* Xi	Wi*Xi	*(ti)*(Xi)					
	(ft)	(in)	(kips)	(ft)	(ft ²)	(kips-ft)	(ft)					
5	8.0	0.316	22.7	36	3,456	817	1,092					
4	8.0	0.283	20.3	28	2,688	569	761					
3	8.0	0.342	24.6	20	1,920	491	657					
2	8.0	0.454	32.6	12	1,152	391	523					
Base	8.0	0.541	38.9	4	384	155	208					
	40.0	Ws =	139.1		9,600	2,425	3,240					

Page 2 of 57

Project: HBMWD Reservoirs Seismic Retrofit Project (3 tanks)

Client: Humboldt Bay Municipal Water District

Project #: 12627733 HYDROSTATIC DESIGN

Ring No.	Ring Ht	Steel Material	Max unit tension [Table 34]	Design Fluid Depth	Design Pt Elev	Hoop Force at Design Pt	Sheli PL. t _{REO'D}	Shell PL	Shell PL Code t _{MIN}	Shell PL Hoop Stress	Allow Hoop Stress
-	(ft)	-	(psi)	(ft)	(ft)	(lbs/in)	(in)	(in)	(in)	(psi)	(psi)
5	8.0	A36	19,330	5.0	32.0	910	0.047	0.316	0.250	2880	1643
4	8.0	A36	19,330	13.0	24.0	2,366	0.122	0.283	0.250	8360	1643
3	8.0	A36	19,330	21.0	16.0	3,822	0.198	0.342	0.250	11175	1643
2	8.0	A36	19,330	29.0	8.0	5,278	0.273	0.454	0.250	11626	1643
Base	8.0	A36	19,330	37.0	0.0	6,734	0.348	0.541	0.250	12447	1643
	40.0		ne steel rial is A36								76%

Unit Hydrostatic Hoop Force = $2.6 \times D \times G / E =$ Hoop Force at Design Point = $2.6 \times Hp \times D \times G / E$ Shell Plate Thickness, t = $2.6 \times Hp \times D \times G / s \times E$ 214.1 lbs / in of shell height / foot of water depth

[Eq. 3-40]

SEISMIC ACTIONS

D/H =	1.89	Aspect ratio, Diameter to MOL	
I _E =	1.50	Importance factor	
S ₁ =	1.07 g	Mapped MCE _R Spect Response, 1-sec	
S _{DS} =	2.09 g	Spectral Accel, Short, ASCE 7-10 (5% damped)	
S _{D1} =	1.22 g	Spectral Accel, 1-sec, ASCE 7-10 (5% damped)	
Ti =	0.00 s	Natural period of structure (assumed to be zero per Section 13	.5)
Ts =	0.58 s	Transition period	$Ts = S_{D1}/S_{DS}$
Tc =	4.83 s	Convective period	[Eq 13-22]
T _L =	8.00 s	Long period transition period	
Sai =	2.09 g	Design spectral accel, Impulsive, 5% damping (assumes Ti=0)	[Eq 13-9]
Sac =	0.377 g	Design spectral accel, Convective, 0.5% damping	[Eq 13-12, 13-13]
Ri =	2.5	Response Mod Factor, Impl (Anchor dependent)	[Table 28]
Rc =	1.5	Response Mod Factor, Conv	[Table 28]
Ai _{MIN} ≓	0.23 g	Impulsive design accel, minimum	[Eq 13-17]
Ai =	0.89 g	Impulsive design accel	[Eq 13-17]
Ac =	0.27 g	Conventive design accel	[Eq 13-18]
Av =	0.29 g	Vertical ground motion	[Section 13.5.4.3]
Af =	0.38 g	Convective design accel for sloshing	[Eq 13-53 to 56]
d =	13.2 ft	Slosh wave height above MOL	[Eq 13-52]
B _{Req'd} =	13.2 ft	Required freeboard	[Table 29]
	nsufficient Fr	eeboard	

Welded Steel Water Storage Tank

Design Calculations per AWWA D100-11

		unicipal Water District	Design Calculations per AWWA D100-11
	2627733		
	IONS Cont'd nic Weights and	Heights	
$W_T =$	8,885 kips	Weight of liquid ("contents")	
$Wi/W_T =$	0.57	Effective Impulsive ratio (force from "lower" constrained fluid)	[Eq 13-24, 25]
Wi =	5,029 kips	Effective Impulsive weight	[Eq 13-24, 25]
Xi=	13.9 ft	Effective Impulsive height resultant above tank base, EBP	[Eq 13-28, 29]
$Wc/W_T =$	0.42	Effective Convective ratio (force from "upper" sloshing fluid)	[Eq 13-26]
Wc =	3,710 kips	Effective Convective weight	[Eq 13-26]
Xc =	22.7 ft	Effective Convective height resultant above tank base, EBP	[Eq 13-30]
eismic Dema	nd		
Ws =	139.1 kips	Tank shell weight	
Xs =	17.4 ft	Tank shell centroid	
Wr =	61.6 kips	Tank roof weight	
Ht = Wf =	40.0 ft	Tank roof height	
	39.3 kips	Tank bottom (floor) weight	
V _f =	4,820 kips	Design shear at top of fdn	[Eq 13-31]
M _s =	70,569 kip-ft	Design OTM at bottom of shell (EBP)	[Eq 13-23]
b =	35 ft	Tributary roof plate length along tank perimeter - assume equal to	
w _{rs} =	280 plf	Weight of roof perimeter resisting OTM (Wr/ π D for tank without c	·
w _t =	913 plf	Weight of tank shell and tributary roof load at perimeter	[Eq 13-41]
w,' =	806 plf	Effective weight at perimeter $w_t' = w_t^*(1-0.4^*Av)$	
t _b =	0.25 in	Design thickness, bottom annulus floor ring (governing thickness)
F _y =	36,000 psi	Yield strength, bottom annulus	
w _{Lmax} =	3315 plf	Limit, Weight of fluid resisting OTM, w _{Lmax} = 1.28HDG	[Eq 13-37]
w _L =	2279 plf	Weight of fluid resisting OTM	[Eq 13-37]
J =	4.67	Overturning ratio	(Eq 13-36)
L _{MAX} =	2.5 ft	Limit, Reg'd width of bottom annulus	
L =	1.7 ft	Req'd bottom annulus	[Eq 13-38]
B	Aechanical And	horing Required	
iding Check	0.58	Lower bound, Coefficient of sliding friction	
μ= μ=	0.58	Coefficient of sliding friction	
V _{ALLOW} =	4,558 kips	Sliding resistance (capacity) to seismic shear	[Eq 13-57]
D/C =	1.06 Additional Shea	Demand vs Capacity, seismic sliding r Resistance Required	

Page 4 of 57

Project:				Retrofit P	roject (3	tanks)			Desi	Welded Steel Wa gn Calculations pe		
Client:			nicipal Wate	er District					D63	gir calculations pe		,-1,
Project #:	1262773	3	and the second second second		2011120-Car	1	Contract of the	and the state of the state			a strategic fragments	100
EISMIC ST	and the second se	- Compr	occivo	al 1	and the second second	Maria Contra		and second		- CALIFORNIA COMPANY	S. C. M. HELMANNIA	02404
Anchor =				oring or Med	hanical							
w _t " =	1,019	olf		hell unit wei			$w_{t}^{*} = w_{t}^{*}(1)$	+0.4*Av)				
$\sigma_{c1} =$		-1.5		.ong't comp	-					(Ea 13-39)		
$\sigma_{c2} =$		-		.ong't comp	•			,		(Eq 13-40)		
	N/A	psi		Demand, L	•					[24 10 40]		
R =			Tank radiu									
t _B /R=				a II thickness i	to tank ra	dius lowe	est shell	$(t/R)_{2} = 0.0$	03537 (0	lass 2 mat)		
t/R _{Min} =		- · · · · · · · · · · · · · · · · · · ·		r bound t/R								
р =	16.0		Hydrostati		por mour		0.0.100 0.1	.,,,				
Ko =				oefficient, u	pper limit	= 1.25				[Eq 3-17]		
FL1 =	2,441	psi	Allowable	local elastic	buckling,	Method ⁻	I (static)			[Eq 3-11, Table	e 11]	
FL ₂ =	3,051	psi	Allowable	local elastic	buckling,	Method 2	2 (Referen	ce Only)		[Eq 3-14]		
(P/E)(R/t) [∠] =	0.33	1			[Assume	d > 0.064	.]			(Eq 13-50, 13-	51]	
$\Delta C_c =$	0.14		Pressure-s	stabilizing bu	uckling co	efficient,	Limit = 0.2	2		[Eq 13-51]		
Δσ _{cr} =	5,408	psi	Critical but	ckling increa	ase for se	If anchore	ed tank due	e to p		(Eq 13-49]		
σ _e =	6,843	psi	Seismic al	lowable con	npr stress	, includin	g 1.33 incr	ease		[Eq 13-47]		
D/C =	N/A		Compress	ive stress d	emand vs	canacity	at bottom	shell				
5.0 -		ssive stre		ot be calcu								
ank Seismie	c Stresses	- Tensio	<u>n</u>									
D/H =	1.89											
Ring	Y, Design Fluid	Design	[Eq 13- 39 to 41]	[Eq 13-42]		Hydro- static hoop	Shell PL	Seismic hoop	Static hoop	Total hoop		
No.	Depth	Pt Elev	Ni	Nc	Nh*Av	Nh	t _{USED}	σs	σ_{static}	$\sigma_{static} + \sigma_s$	D/C	
_	7(#1)	(#)	(lbs/in)	(lbe/in)	(lbe/in)	(lbe/in)	/in\	(nei)	(nei)	(nei)		

Tung	Tidia	Design	39 (0 4 1]	[⊏q 13-4z]		noop	SHEILE	поор	поор	i otal noop		
No.	Depth	Pt Elev	Ni	Nc	Nh*Av	Nh	t _{USED}	σs	$\sigma_{\rm static}$	$\sigma_{static} + \sigma_s$	D/C	
-	(ft)	(ft)	(lbs/in)	(lbs/in)	(lbs/in)	(lbs/in)	(in)	(psi)	(psi)	(psi)		
5	5	32	1219	1009	266	910	0.316	5077	2880	7,957	0.36	ок
4	13	24	2801	692	692	2,366	0.283	10484	8360	18,844	0.86	OK
3	21	16	3931	499	1117	3,822	0.342	12039	11175	23,214	1.06	NG
2	29	8	4609	395	1543	5,278	0.454	10742	11626	22,367	1.02	NG
Base	37	0	4835	363	1968	6,734	0.541	9673	12447	22,121	1.01	NG

ļ	Required Anc	:horing					
	J =	4.67		Overturning ratio		[Eq 13-36]	
	Anchor =	SELF		Self-Anchoring or Mechanical			
	N =	44		Number of Tension Anchors aro	und tank perimeter		
	D _{ac} =	72.0	ft	Diameter of anchor circle = D+2	(1.0'), anchors are spaced 1.	0-ft off of tank shell	
	s =	5.1	ft	Anchor spacing			
	M _s =	70,569	kip-ft	Seismic overturning		[Eq 13-23]	
	W' =	201	kips	W' = w _T *D*pi			
	Ps =	N/A	kips per	anchor		(Eq 3-42)	
		Net Tensi	ion				
					1.638 0.927192		
- I							

14

Page 5 of 57

		nicipal Water District	Design Calculations per AWWA D100-11
	12627733		
VIND DESIGN	N - TANK EMPTY		
Vind			
V _{3s} =	85 mph	Wind Velocity, 3-second gust [Provided]	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Angle	Roof Type	
Cf =	0.60	Wind Drag Factor, lateral	Table 2
Cf _R =	-0.53	Wind Drag Factor, uplift ("suction") at roof, avera	ge
Kz =	1.09	Velocity pressure coeff	Table 3
Pw =	18.0 psf	Wind lateral pressure, ASD level	[Eq 3-1]
Pw _R =	-12,3 psf	Wind roof pressure, ASD level	
ocal shell pla	te bending / Stiffe	ener check	
ť =	0.275 in	Min req'd average shell PL thickness for wind [Ed	
		Avg Shell Thickness, t' = (Pw x D^3/2 x Hs / 10.6	625 x 10^6) ^ 2/5
$t_{ave} =$	0.387 in	OK	
Stability check	- Sliding - Wind		
μ=	0.58	Lower bound, Coefficient of sliding friction	
μ =	0.80	Coefficient of sliding friction for wind	
Fup =	-47 kips	Net uplift concurrent with lateral load (no reduction	on)
Wstl =	240 kips	Total steel weight (Roof, shells, floor PL)	
V _{ALLÓW_W} =	81.2 kips	Sliding resistance (capacity) to wind	$V_{ALLOW_W} = \mu^*(0.6^*Wstl+0.9^*Fup)$
V _{Wind} =	45.4 kips	Driving sliding demand, V = 0.9*Pw *A _{SIDE}	V _{WIND} = 0.9*Pw *A _{SIDE}
D/C =	0.56		
1	Wind Sliding OK		
Stability cehck	- Overturning - V	Vind	
MALLOW_W =	3,553 kip-ft	OTM resistance (capacity) to wind	M _{ALLOW_W} = (0.6*WstI+0.9*Fup)*D/2
M _{Wind} =	907 kip-ft	Driving OTM demand, $M_{WIND} = V_{WIND}^{*}Ht/2$	
D/C =	0.26		
Ĩ	Wind Overturnin	g OK	
		Basis for design for Stability:	
		ASCE 7-10, Eq 2.4.1,Eq 7, with Except 2 and 0.6 with Exception 2 and 0.6W = W	SW = W

	12627733	Day Mult	icipal Water [Jouroc					
-	1MG Korl	olex						RE ¹	TROFIT CALCULATIONS
The followin	g calculat	ions refer	ence the des	ign and j	procedures	outlined	in AWWA	D100-1	1
			ERS - GROU			HILVERSON	SPS LUDDU	A STATE	A CHARMAN AND A MARKED AND A STREET AND
eometry and	Construc	tion				1	1967		Year Designed
D =	70.0		Tank Diamete	er		E =	0.85	-	Joint Efficiency
R =	35.0	ft	Tank Radius			DMT >=	20	۰F	Design Metal Temp [Ch 14]
Ht =	40.0	ft	Tank Shell H	eight		G =	1.00		Specific Gravity
H =	37.0	ft	Liquid Height	, MOL		TCL =	37.0	ft	Top Capacity Level, overflow
Op Cap =	1.1	MG	Nominal store	age capa	icity	γ _L =	62.4	pcf	Unit Weight
Max Cap =	1.1	MG	Nominal stora	age capa	acity	FB =	3.0	ft	Available Freeboard
W _T =	8,885	kips	Weight of liqu	uid ("con	tents"); Op	erating le	vel		
eismic									
Lat =	40.907	•	Latitude (for	USGS D	esion Map)	1			
	-124.064		Longitude (fo						
Site =	D		Site Class, A						
S ₁ =	1.07		Mapped MCE			1-sec, A	SCE 7-16	/ USGS	6
S _{DS} =	2.09	v	Spectral Acc						
S _{D1} ≠	1.22	-	Spectral Acc						(used 7-10)
		-	•			-		000	(daed refo)
T _L =	8.0		Long period I		i perioa, At	SCE 7-10	10565		
Group =	111		Seismic Use	•					
I _E =	1.50		Seismic Use	Factor					[Table 21]
Anchor =	MECH		Self-Anchorir	ng or Me	chanical				
Vind				-					
V _{3s} =	85	mph	Wind Velocity	v 3-seco	and oust (A	SCE 7-10)]		G = 1.00 Gust Factor
* 35	Angle	•	Roof Type	, 0 000	ing guor (, .		.1		
Cf =	0.60		Wind Drag F	actor. lat	eral				[Table 2]
Cf _R =	-0.5		Wind Drag F			n") at roo	f. average		(
Kz =	1.09		Velocity pres	-		,	.,		[Table 3]
Pw =	18.0		Wind lateral			i (l=1.15)			[Eq 3-1]
Pw =	-12.3		Wind roof pro						
UMMARY C			V and an end of the second second	NUMBER OF	ZIARURANA P	a manasak		10.000	
				COMPANY ON THE		144	20.000	ile a	Deef alate (acest flat)
tr =	0.250		Roof PL thick			Wrp =	39,286		Roof plate (nearly flat)
tk =	0.250		Knuckle PL t Roof framing		oct)	Wrk = Wrf =	22,305	lbs	Knuckle plate (6" radius) Roof framing (estimate)
pr =	5.8	•	Floor PL thic		est	Wr =	61,592		Total roof steel wt
tf =	0.250	IN	FIDOR PL INC	ĸ				105	
						Wf =	39,286		Floor steel wt
<u>hell (Wall) V</u>	Veights								
Dine			Weight		Ring Ht		(Ding 111)		
Ring	Ding Lit	Shell PL		N:		MARSHAR	(Ring Ht)		
No.	Ring Ht	t _{USED}	per Ring	Xi	* Xi	Wi*Xi	*(ti)*(Xi)		
-	(ft)	(in)	(kips)	(ft)	(ft ²)	(kips-ft)	(ft)		
5	8.0	0.316	22.7	36	3,456	817	1,092		
4	8.0	0.283	20.3	28	2,688	569	761		
3	8.0	0.342	24.6	20	1,920	491	657		
2	8.0	0.454	32.6	12	1,152	391	523		
Base	8.0	0.541	38.9	4	384	155	208		
	40.0	Ws =	139.1		9,600	2,425	3,240		

Project: Client: HBMWD Reservoirs Seismic Retrofit Project (3 tanks)

Humboldt Bay Municipal Water District 12627733

Project #:

Ring No.	Ring Ht	Steel Material	Max unit tension [Table 34]	Design Fluid Depth	Design Pt Elev	Hoop Force at Design Pt	Sheli PL t _{REO'D}	Shell PL t _{useD}	Shell PL Code t _{MiN}	Shell PL Hoop Stress	Allow Hoop Stress
-	(ft)	-	(psi)	(ft)	(ft)	(lbs/in)	(in)	(in)	(in)	(psi)	(psi)
5	8.0	A36	19,330	5.0	32.0	910	0.047	0.316	0.250	2880	16431
4	8.0	A36	19,330	13.0	24.0	2,366	0.122	0.283	0.250	8360	16431
3	8.0	A36	19,330	21.0	16.0	3,822	0.198	0.342	0.250	11175	1643
2	8.0	A36	19,330	29.0	8.0	5,278	0.273	0.454	0.250	11626	1643 [.]
Base	8.0	A36	19,330	37.0	0.0	6,734	0.348	0.541	0.250	12447	1643
<u>3:</u>	40.0	Assur mater	ne steel rial is A36			0.75					76%
							sheli neig	ht / foot of	water dep	ith	
				Max unit tension [Table 34] Design Fluid Depth Force at Pt Elev Force at Design Pt Elev Shell PL Pt Shell PL t _{REO'D} Shell PL t _{USED} Shell PL t _{MIN} Shell PL Hoop Stress (psi) (ft) (ft) (lbs/in) (in) (in) (in) (psi) 19,330 5.0 32.0 910 0.047 0.316 0.250 28: 19,330 13.0 24.0 2,366 0.122 0.283 0.250 83: 19,330 21.0 16.0 3,822 0.198 0.342 0.250 111 19,330 29.0 8.0 5,278 0.273 0.454 0.250 116: 19,330 37.0 0.0 6,734 0.348 0.541 0.250 124							

D/H =	1.89	Aspect ratio, Diameter to MOL	
I _E =	1.50	Importance factor	
S1 =	1.07 g	Mapped MCE _R Spect Response, 1-sec	
S _{DS} =	2.09 g	Spectral Accel, Short, ASCE 7-10 (5% damped)	
S _{D1} =	1.22 g	Spectral Accel, 1-sec, ASCE 7-10 (5% damped)	
Ti =	0.00 s	Natural period of structure (assumed to be zero per Section 13	.5)
Ts =	0.58 s	Transition period	$Ts = S_{D1}/S_{DS}$
Tc =	4.83 s	Convective period	[Eq 13-22]
T _L ≓	8.00 s	Long period transition period	
Sai =	2.09 g	Design spectral accel, Impulsive, 5% damping (assumes Ti=0)	[Eq 13-9]
Sac =	0.377 g	Design spectral accel, Convective, 0.5% damping	[Eq 13-12, 13-13]
Ri =	3.0	Response Mod Factor, Impl (Anchor dependent)	[Table 28]
Rc =	1.5	Response Mod Factor, Conv	[Table 28]
Ai _{MIN} =	0.19 g	Impulsive design accel, minimum	[Eq 13-17]
Ai =	0.75 g	Impulsive design accel	[Eq 13-17]
Ac =	0.27 g	Conventive design accel	[Eq 13-18]
Av =	0.29 g	Vertical ground motion	[Section 13.5.4.3]
Af =	0.38 g	Convective design accel for sloshing	[Eq 13-53 to 56]
d =	13,2 ft	Slosh wave height above MOL	[Eq 13-52]

FB_{Regid} = 13.2 ft

Insufficient Freeboard

Required freeboard

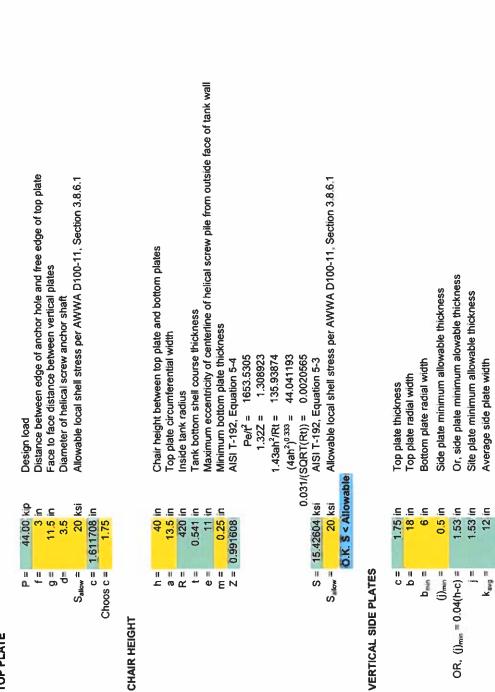
[Table 29]

Welded Steel Water Storage Tank Design Calculations per AWWA D100-11

AWWA D100 Steel Tank_1MG Korblex-RETROFIT.xism

Page 2 of 5

2627733	unicipal Water District	
ONE Cookid		
ONS Cont'd		
nic Weights and		
8,885 kips	Weight of liquid ("contents")	
0.57	Effective Impulsive ratio (force from "lower" constrained fluid)	[Eq 13-24, 25]
5,029 kips	Effective Impulsive weight	[Eq 13-24, 25]
13.9 ft	Effective Impulsive height resultant above tank base, EBP	[Eq 13-28, 29]
0.42	Effective Convective ratio (force from "upper" sloshing fluid)	[Eq 13-26]
3,710 kips	Effective Convective weight	[Eq 13-26]
22.7 ft	Effective Convective height resultant above tank base, EBP	[Eq 13-30]
nd		
139.1 kips	Tank shell weight	
17.4 ft		
	-	
		[Eq 13-31]
60,134 kip-ft	Design OTM at bottom of shell (EBP)	[Eq 13-23]
35 ft	Tributary roof plate length along tank perimeter - assume equal to	o tank radius
280 plf	Weight of roof perimeter resisting OTM (Wr/ π D for tank without c	entral column)
913 plf	Weight of tank shell and tributary roof load at perimeter	[Eq 13-41]
806 plf	Effective weight at perimeter $w_1' = w_1^*(1-0.4^*Av)$	
)
	•	,
	-	[Eq 13-37]
		• • •
	weight of fluid resisting OTM	[Eq 13-37]
	Overturning ratio	[Eq 13-36]
2.5 ft	Limit, Req'd width of bottom annulus	
1.7 ft)K	Req'd bottom annulus	(Eq 13-38)
0.58	Lower bound, Coefficient of sliding friction	
0.58	Coefficient of sliding friction	
4,558 kips	Sliding resistance (capacity) to seismic shear	[Eq 13-57]
0.89 Bliding OK	Demand vs Capacity, seismic sliding	
	0.57 5,029 kips 13.9 ft 0.42 3,710 kips 22.7 ft 139.1 kips 17.4 ft 61.6 kips 40.0 ft 39.3 kips 60,134 kips 60,134 kips 60,134 kips 60,134 kips 17.4 ft 61.6 kips 40.0 ft 39.3 kips 1.7 ft 3.98 2.5 ft 1.7 ft 0.58 0.58 0.58	0.57Effective Impulsive ratio (force from "lower" constrained fluid)5,029 kipsEffective Impulsive weight13.9 ftEffective Impulsive height resultant above tank base, EBP0.42Effective Convective ratio (force from "upper" sloshing fluid)3,710 kipsEffective Convective weight22.7 ftEffective Convective height resultant above tank base, EBP139.1 kipsTank shell weight17.4 ftTank shell centroid61.6 kipsTank roof weight40.0 ftTank roof height39.3 kipsTank bottom (floor) weight40.054 kipsDesign shear at top of fdn60,134 kip-ftDesign OTM at bottom of shell (EBP)35 ftTributary roof plate length along tank perimeter - assume equal to Weight of roof perimeter resisting OTM (Wr/ π D for tank without c913 plfWeight of tank shell and tributary roof load at perimeter806 plfEffective weight at perimeter913 plfWeight of fluid resisting OTM, wt_max = 1.28HDG2279 plfWeight of fluid resisting OTM3.98Overturning ratio2.5 ftLimit, Req'd width of bottom annulus1.7 ftReq'd bottom annulus1.7 ftReq'd bottom annulus1.7 ftReq'd bottom annulus


	12627733		icipal Wate	a District								
ISMIC STR		in Saide	a water	Service .	speldor vice	an a	190.00	College States	Service and	A Hospital	at and like	100.0
ink Seismic	Stresses	- Compre	ssive									
Anchor =	MECH		Self-Ancho	ring or Mec	hanical							
w _t " =	1,019	plf	Effective sl	hell unit weig	ght		$w_t^{\prime\prime} = w_t^*(1$	+0.4*Av)				
σ _{c1} =	2563	psi	Demand, L	ong't compr	stress (F	or J<0.7	85, or Mech	n Anchor)		[Eq 13-39]		
σ _{c2} =	-483	psi	Demand, L	.ong't compr	r stress (F	or 0.785	<j<1.54)< td=""><td></td><td></td><td>[Eq 13-40]</td><td></td><td></td></j<1.54)<>			[Eq 13-40]		
σ _c =	2563	psi	Governing	Demand, Lo	ong't com	pr stress						
R =	420	in	Tank radiu	s								
t _B /R=	0.0013		Ratio, shel	l thickness t	to tank rad	dius, Iowo	est shell	$(t/R)_{c} = 0.0$	03537 (C	lass 2 mat)		
t/R _{Min} =	0.0010			r bound t/R				y)				
p =	16.0		Hydrostatic									
Ko =	1.25	1	Buckling co	pefficient, up	oper limit	= 1.25				[Eq 3-17]		
FL1 =	2,441	psi		ocal elastic	_					(Eq 3-11, Tabl	e 11]	
FL ₂ =	3,051	psi	Allowable I	ocal elastic	buckling,	Method	2 (Reference	ce Only)		[Eq 3-14]		
P/E)(R/t) ² =	0.33				(Assume	d > 0.064	l]			[Eq 13-50, 13-	51]	
$\Delta C_c =$	0.14		Pressure-s	tabilizing bu	ckling co	efficient,	Limit = 0.2	2		[Eq 13-51]		
Δσ _{cr} =	0	psi	Critical bud	ckling increa	ase for sel	f anchore	ed tank due	e to p		[Eq 13-49]		
σ _e =	3,247	psi	Seismic all	lowable com	npr stress	, includin	g 1.33 incre	ease		[Eq 13-47]		
D (0)												
U/C =	0.79		Compressi	ve stress de	emand vs	capacity	at bottom :	shell				
D/C = ank Seismic D/H =	: Stresses		·	ive stress de	emand vs	capacity	at bottom :	shell				
ank Seismic D/H =	: <u>Stresses</u> 1.89 Y, Design	- Tensio	<u>)</u> [Eq 13-		emand vs	Hydro- static		Seismic	Static	T-1-1 b		
ank Seismic D/H = Ring	: <u>Stresses</u> 1.89 Y, Design Fluid	<u>- Tensior</u> Design	[Eq 13- 39 to 41]	[Eq 13-42]		Hydro- static hoop	Shell PL	Seismic hoop	hoop	Total hoop	D/C	
ank Seismic D/H = Ring No.	1.89 1.89 Y, Design Fluid Depth	<u>- Tensio</u> Design Pt Elev	[Eq 13- 39 to 41] Ni	[Eq 13-42] Nc	Nh*Av	Hydro- static hoop Nh	Shell PL t _{USED}	Seismic hoop o _s	hoop σ _{static}	$\sigma_{static} + \sigma_s$	D/C	
nk Seismic D/H = Ring No. -	1.89 Y, Design Fluid Depth (ft)	Design Pt Elev (ft)	[Eq 13- 39 to 41] Ni (Ibs/in)	[Eq 13-42] Nc (lbs/in)	Nh*Av (Ibs/in)	Hydro- static hoop Nh (lbs/in)	Shell PL t _{USED} (in)	Seismic hoop σ _s (psi)	hoop	σ _{static} +σ _s (psi)	D/C	
n <u>k Seismic</u> D/H = Ring No.	1.89 1.89 Y, Design Fluid Depth	<u>- Tensio</u> Design Pt Elev	[Eq 13- 39 to 41] Ni	[Eq 13-42] Nc	Nh*Av	Hydro- static hoop Nh	Shell PL t _{USED}	Seismic hoop o _s	hoop σ _{static} (psi)	$\sigma_{static} + \sigma_s$	-	
Ring No. 5	Stresses 1.89 Y, Design Fluid Depth (ft) 5	Design Pt Elev (ft) 32	[Eq 13- 39 to 41] Ni (Ibs/in) 1015	[Eq 13-42] Nc (lbs/in) 1009	Nh*Av (lbs/in) 266 692 1117	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822	Shell PL t _{USED} (in) 0.316 0.283 0.342	Seismic hoop σ _s (psi) 4608	hoop σ _{static} (psi) 2880 8360 11175	σ _{static} +σ _s (psi) 7,488 17,303 21,401	- 0.34 0.79 0.98	
nk Seismic D/H = Ring No. - 5 4 3 2	Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29	Design Pt Elev (ft) 32 24 16 8	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841	[Eq 13-42] Nc (lbs/in) 1009 692 499 395	Nh*Av (lbs/in) 266 692 1117 1543	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454	Seismic hoop σ _s (psi) 4608 8943 10225 9159	hoop σ _{static} (psi) 2880 8360 11175 11626	σ _{state} +σ _s (psi) 7,488 17,303 21,401 20,785	0.34 0.79 0.98 0.95	
Ring No. 5 4 3	Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21	Design Pt Elev (ft) 32 24 16	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276	[Eq 13-42] Nc (lbs/in) 1009 692 499	Nh*Av (lbs/in) 266 692 1117	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822	Shell PL t _{USED} (in) 0.316 0.283 0.342	Seismic hoop σ _s (psi) 4608 8943 10225	hoop σ _{static} (psi) 2880 8360 11175	σ _{static} +σ _s (psi) 7,488 17,303 21,401	- 0.34 0.79 0.98	
nk Seismic D/H = Ring No. - 5 4 3 2 Base	2 Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37	Design Pt Elev (ft) 32 24 16 8	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841	[Eq 13-42] Nc (lbs/in) 1009 692 499 395	Nh*Av (lbs/in) 266 692 1117 1543	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454	Seismic hoop σ _s (psi) 4608 8943 10225 9159	hoop σ _{static} (psi) 2880 8360 11175 11626	σ _{state} +σ _s (psi) 7,488 17,303 21,401 20,785	0.34 0.79 0.98 0.95	
Ring No. - 5 4 3 2 Base	Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 choring	Design Pt Elev (ft) 32 24 16 8 0	[Eq 13- 39 to 41] Ni (lbs/in) 1015 2334 3276 3841 4029	[Eq 13-42] Nc (lbs/in) 1009 692 499 395 363	Nh*Av (lbs/in) 266 692 1117 1543	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454	Seismic hoop σ _s (psi) 4608 8943 10225 9159	hoop σ _{static} (psi) 2880 8360 11175 11626	σ _{state} +σ _s (psi) 7,488 17,303 21,401 20,785 20,764	0.34 0.79 0.98 0.95	
nk Seismic D/H = Ring No. - 5 4 3 2 Base	Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 choring 3.96	Design Pt Elev (ft) 32 24 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841 4029 Overturnin	[Eq 13-42] Nc (lbs/in) 1009 692 499 395 363	Nh*Av (lbs/in) 266 692 1117 1543 1968	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454	Seismic hoop σ _s (psi) 4608 8943 10225 9159	hoop σ _{static} (psi) 2880 8360 11175 11626	σ _{state} +σ _s (psi) 7,488 17,303 21,401 20,785	0.34 0.79 0.98 0.95	
Ank Seismic D/H = Ring No. - 5 4 3 2 Base equired Anc J =	Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 choring 3.96	Design Pt Elev (ft) 32 24 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841 4029 Overturnin Self-Ancho	[Eq 13-42] Nc (Ibs/in) 1009 692 499 395 363 g ratio	Nh*Av (lbs/in) 266 692 1117 1543 1968 chanical	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278 6,734	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454 0.541	Seismic hoop σ _s (psi) 4608 8943 10225 9159	hoop σ _{static} (psi) 2880 8360 11175 11626	σ _{state} +σ _s (psi) 7,488 17,303 21,401 20,785 20,764	0.34 0.79 0.98 0.95	(
Ank Seismic D/H = Ring No. - 5 4 3 2 Base equired Anc J = Anchor =	Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 Choring 3.98 MECH	Design Pt Elev (ft) 32 24 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841 4029 Overturnin Self-Ancho Number of	[Eq 13-42] Nc (Ibs/in) 1009 692 499 395 363 g ratio pring or Med	Nh*Av (lbs/in) 266 692 1117 1543 1968 chanical nchors arc	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278 6,734	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454 0.541	Seismic hoop σ _s (psi) 4608 8943 10225 9159 8317	hoop	σ _{atate} +σ _a (psi) 7,488 17,303 21,401 20,785 20,764	0.34 0.79 0.98 0.95	(
Anchor =	2 Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 21 29 37 21 29 37 21 29 37 21 29 37 21 29 37 21 29 37 21 29 37	Design Pt Elev (ft) 32 24 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841 4029 Overturnin Self-Ancho Number of	[Eq 13-42] Nc (Ibs/in) 1009 692 499 395 363 g ratio pring or Mec Tension Ar of anchor cir	Nh*Av (lbs/in) 266 692 1117 1543 1968 chanical nchors arc	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278 6,734	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454 0.541	Seismic hoop σ _s (psi) 4608 8943 10225 9159 8317	hoop	σ _{atate} +σ _a (psi) 7,488 17,303 21,401 20,785 20,764	0.34 0.79 0.98 0.95	(
Anchor = D/H = D/H = D/H = Ring No. - 5 4 3 2 Base Base J = Anchor = N = D _{ac} =	2 Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 choring 3.96 MECH 44 72.0 5.1	Design Pt Elev (ft) 32 24 16 8 0	[Eq 13- 39 to 41] Ni (lbs/in) 1015 2334 3276 3841 4029 Overturnin Self-Ancho Number of Diameter of	[Eq 13-42] Nc (Ibs/in) 1009 692 499 395 363 g ratio pring or Med Tension Ar of anchor cir acing	Nh*Av (lbs/in) 266 692 1117 1543 1968 chanical nchors arc	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278 6,734	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454 0.541	Seismic hoop σ _s (psi) 4608 8943 10225 9159 8317	hoop	σ _{atate} +σ _a (psi) 7,488 17,303 21,401 20,785 20,764	0.34 0.79 0.98 0.95	(
Anchor = D/H = Ring No. - 5 4 3 2 Base Equired Ance J = Anchor = N = D _{ac} = s =	2 Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 29 37 20 37 20 5 13 21 29 37 20 5 13 21 29 37 20 5 13 21 29 37 21 20 37 20 20 20 20 20 20 20 20 20 20	Design Pt Elev (ft) 32 24 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841 4029 Overturnin Self-Ancho Number of Diameter of Anchor spi	[Eq 13-42] Nc (Ibs/in) 1009 692 499 395 363 g ratio oring or Med Tension Ar of anchor cir acing verturning	Nh*Av (lbs/in) 266 692 1117 1543 1968 chanical nchors arc	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278 6,734	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454 0.541	Seismic hoop σ _s (psi) 4608 8943 10225 9159 8317	hoop	σ _{state} +σ _s (psi) 7,488 17,303 21,401 20,785 20,764 [Eq 13-36] tank shell	0.34 0.79 0.98 0.95	
ank Seismic D/H = Ring No. - 5 4 3 2 Base equired Anc J = Anchor = N = D _{ac} = S = M _S =	2 Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 Schoring 3.96 MECH 44 72.0 5.1 60,134 201	Design Pt Elev (ft) 32 24 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841 4029 Overturnin Self-Anchor Number of Diameter of Diameter of Number of Diameter of Seismic ov W' = w _T *D	[Eq 13-42] Nc (Ibs/in) 1009 692 499 395 363 g ratio oring or Med Tension Ar of anchor cir acing verturning	Nh*Av (lbs/in) 266 692 1117 1543 1968 chanical nchors arc	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278 6,734	Shell PL t _{USED} (in) 0.316 0.283 0.342 0.454 0.541	Seismic hoop σ _s (psi) 4608 8943 10225 9159 8317	hoop	σ _{state} +σ _s (psi) 7,488 17,303 21,401 20,785 20,764 [Eq 13-36] tank shell	0.34 0.79 0.98 0.95	(
ank Seismic D/H = Ring No. - 5 4 3 2 Base equired Anc J = Anchor = N = D _{ac} = S = M _S = W' = P _S =	2 Stresses 1.89 Y, Design Fluid Depth (ft) 5 13 21 29 37 Schoring 3.96 MECH 44 72.0 5.1 60,134 201	Design Pt Elev (ft) 32 24 16 8 0 ft ft ft kips kips per	[Eq 13- 39 to 41] Ni (Ibs/in) 1015 2334 3276 3841 4029 Overturnin Self-Anchor Number of Diameter of Diameter of Number of Diameter of Seismic ov W' = w _T *D	[Eq 13-42] Nc (Ibs/in) 1009 692 499 395 363 g ratio oring or Med Tension Ar of anchor cir acing verturning	Nh*Av (lbs/in) 266 692 1117 1543 1968 chanical nchors arc	Hydro- static hoop Nh (lbs/in) 910 2,366 3,822 5,278 6,734	Shell PL tuseD (in) 0.316 0.283 0.342 0.454 0.541	Seismic hoop σ _s (psi) 4608 8943 10225 9159 8317	hoop	σ _{atabc} +σ _a (psi) 7,488 17,303 21,401 20,785 20,764 [Eq 13-36] tank shell [Eq 13-23]	0.34 0.79 0.98 0.95	

		unicipal Water District	Design Calculations per AWWA D100-11
roject #: 120 /IND DESIGN -	27733		
THE PLOIDIT	TRAIL BAIL		
/ind			
V _{3s} =	85 mph	Wind Velocity, 3-second gust [Provided]	
	Angle	Roof Type	
Cf =	0.60	Wind Drag Factor, lateral	Table 2
Cf _R =	-0.53	Wind Drag Factor, uplift ("suction") at roof, average	
Kz =	1.09	Velocity pressure coeff	Table 3
Pw =	18.0 psf	Wind lateral pressure, ASD level	[Eq 3-1]
Pw _R =	-12.3 psf	Wind roof pressure, ASD level	
ocal shell plate	bending / Stiff	ener check	
t' =	0.275 in	Min req'd average shell PL thickness for wind [Eq 3	9-36]
		Avg Shell Thickness, t' = (Pw x D^3/2 x Hs / 10.62	
t _{ave} =	0.387 in	OK	
tability check -			
μ= μ=	0.58	Lower bound, Coefficient of sliding friction Coefficient of sliding friction for wind	
μ = Fup =	-47 kips	Net uplift concurrent with lateral load (no reduction)	
Wstl =	240 kips	Total steel weight (Roof, shells, floor PL)	,
V _{ALLOW W} =	81.2 kips	Sliding resistance (capacity) to wind	$V_{ALLOW W} = \mu^*(0.6^*Wstl+0.9^*Fup)$
V _{Wind} =	45.4 kips	Driving sliding demand, V = 0.9*Pw *A _{SIDE}	V _{WIND} = 0.9*Pw *A _{SIDE}
D/C =	0.56		
Wi	nd Sliding Ol	K	
4 - I- 1114 I I-	O unduration of	Addition of	
tability cehck - M _{ALLOW W} =	3,553 kip-ft	OTM resistance (capacity) to wind	M _{ALLOW W} = (0.6*WstI+0.9*Fup)*D/2
		Driving OTM demand, $M_{WIND} = V_{WIND}^*$ Ht/2	
M _{Wind} = D/C =	907 kip-ft 0.26	Driving Orivi demand, MWIND - VWIND 1102	
	nd Overturni	ηα ΟΚ	
		Basis for design for Stability:	
		ASCE 7-10, Eq 2.4.1, Eq 7, with Except 2 and 0.6W	/ = W
		with Exception 2 and 0.6W = W	

	= USER REQUIRED INPUT = CALCULATED BY THE SPREAD SHEET = CALCULATED BY THE SPREAD SHEET (IMPORTANT VALUE TO CHECK)	Ultimate (LRFD) for concrete design	Ps.u.compression Ps.u.tension = = P_u - 0.6W//N	_			+	50.44 47.71	+	-		13.39 10.66	
	= USER REQUIRED INPUT = CALCULATED BY THE SPREAD = CALCULATED BY THE SPREAD (IMPORTANT VALUE TO CHECK)		S, tention = rhing stress = W'/N	-			+	30.75 5			+		
-		Working Stress (ASD) for helical screw anchor design	P S.compression	(kip)	44.00	43.10	18 71	35.31	31.19	26.43	21.14	9.38	3.15
			W'/N = Tributary Dead Load to Pile	(kip)	4.56	4.50	92.4 97.4	4.56	4.56	4.56	4.00	4.56	4.56
			P = (1/0.7) x M _S (X;)/l _y	(kip-ft)	63	50	23	20	45	38	30	13	4
		NUMBER	$\begin{array}{l} P_{working atreas} \\ = M_{S}(X_{i})(I_{i}, \times \\ \text{No. piles along} \\ \text{ordinate at } X_{i}) \end{array}$	(kip-ft)	44	43	41	35	31	26	21	<u>c</u> a	3
	A A A A A A A A A A A A A A A A A A A	LOCATION N	No of piles at X _i		2	~		7 0	2	2	2 4	70	10
		PILE	X; ² = (R × COS0 ₁) ²	(ft ⁴)	1,287	1,235	1,135	829	647	464	297	158	2
		= HELICAL	PILE Area	(ft²)	1.00	1.00	1.00	00.1	1.00	1.00	1.00	00.1	001
		8	X _i = (R × COS0)	(ft)	35.87	35.14	33.69	31.56	25.43	21,55	17.23	12.57	257
		e da	cose	-			- 1	0.80		i i			
	60,134 kip-ft 420 in 0.541 in 11 in 35.96175 ft 44 8.181818 degrees 5.14 ft 5.14 ft	4.56 kip	0	(degrees)	4 09091	12.27273	20.45455	28.63636	45	53.18182	61 36364	69.54546	R5 90909
	Account Account Account Account	= N/jd*0*_w = N/,M	HELICAL PILE LOCATION NUMBER		1	2		4 4				0	

ANCHOR CHAIR DESIGN (e = 11-in)

TOP PLATE

WELDS

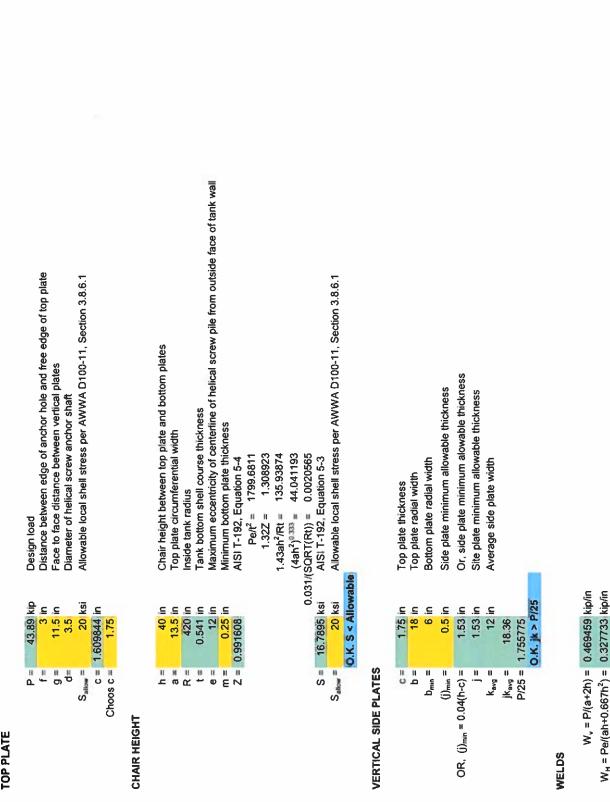
O.K. jk > P/25

P/25 = 1.759843

18.36

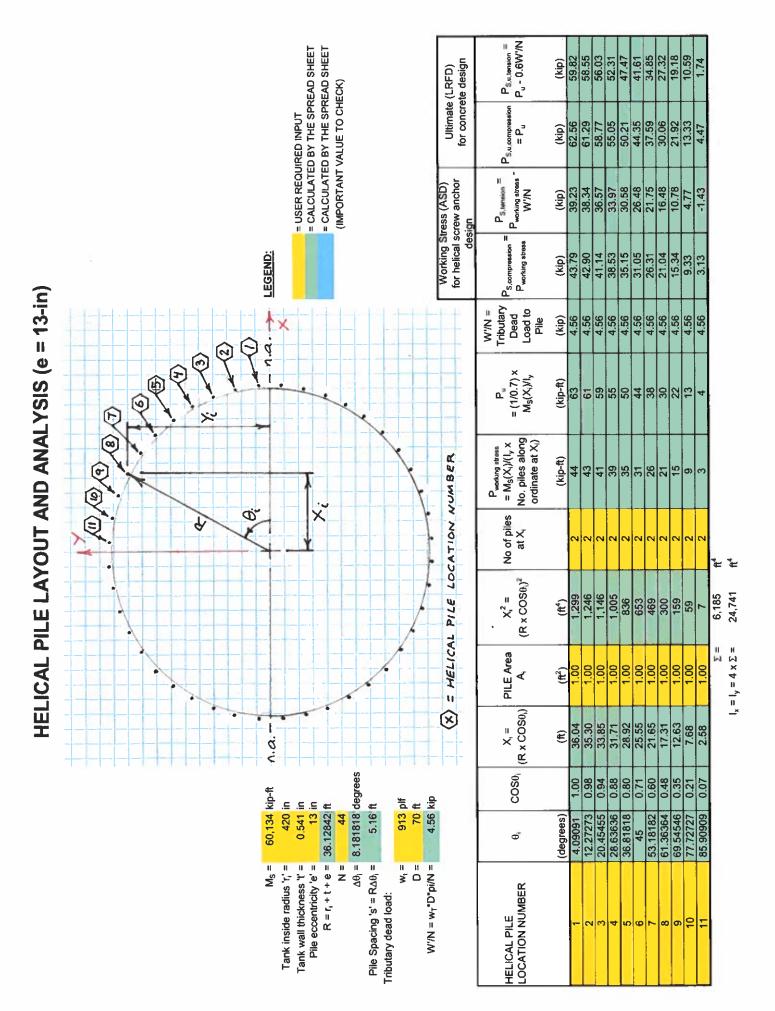
jk_{avg} =

 $W_v = P/(a+2h) = 0.470546 \text{ kip/in}$ $W_{H} = Pe/(ah+0.667h^{2}) = 0.301118 \text{ kip/in}$ $W = SQRT(W_v^2 + W_H^2) = 0.558647 \text{ kip/in}$


Use 1/4-in weld Weld Thk 'w' = W/9.5 = 0.058805 in

	 BISER REQUIRED INPUT CALCULATED BY THE SPREAD SHEET CALCULATED BY THE SPREAD SHEET (MPORTANT VALUE TO CHECK) 	Ultimate (LRFD) for concrete design	Ps.u.compression Ps.u.tension = P 0.6W//N				+	55.18 52.44 50.33 47.50		-	-		13.36 10.63 4.48 1.75	
	= USER REQUIRED INPUT = CALCULATED BY THE S = CALCULATED BY THE S (IMPORTANT VALUE TO (ess (ASD) ew anchor gn	S,tentsion ≕ orking strees -	(kip)	39.33	38.44	36.67	34.06	26.55	21.81	16.53	10.82	4.79	1.44
	EGEND	Working Stress (ASD) for helical screw anchor design	P ₅ compression = Pworking strees	(kip)	43.89	43.00	41.23	38.62	31.12	26.37	21.09	15.38	9.35 3.14	C. 14
			W'/N = Tributary Dead Load to Pile	(kip)	4.56	4.56	4.56	4.56	4.56	4.56	4.56	4.56	4.56	4.00
			= (1/0.7) × M _S (X,)/l _y	(kip-ft)	63	61	59	55	44	38	30	22	13	4
(B) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A		UM BER	Pworking stress = $M_S(X_i)/(I_y \times N_0$. piles along ordinate at X_i	(kip-ft)	44	43	41	39	8 5	26	21	15	თ ო	0
		LOCATION NUMBER	No of piles at X,		2	2	2	~ ~	v c	10	0	2	2 0	7
		511G	X ² = X ² = (R × COS0 ₃) ²	(ft ⁴)	1,293	1,241	1,141	1,001	650	467	298	159	59	
		HELICAL	PILE Area A,	(ft ²)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1
	8.	⊗	X, = (R x COS0.)	(tt)	35.95	35.22	33.77	31.64	26.00	21.60	17.27	12.60	7.66	2.57
			cose		1.00			0.88						0.07
	60,134 kip-ft 420 in 0.541 in 12 in 36.04508 ft 44 8.181818 degrees 5.15 ft 70 ft	DC t	θ	(degrees)	4,09091	12.27273	20.45455	28.63636	30.01010	K3 18182	61.36364	69.54546	77.72727	85.90909
	$M_{S} = Tank inside radius 'r' = Tank wall thickness 't' = Pile eccentricity 'e' = R = r_{1} + t + e = R = r_{1} + t + e = \Delta \theta_{1} = Pile Spacing 's' = R \Delta \theta_{1} = Pile Spacing 's' = R \Delta \theta_{1} = Tributary dead load: wt = D = Mt$		HELICAL PILE LOCATION NUMBER		-	2			0					11

Page 14 of 57


ANCHOR CHAIR DESIGN (e = 12-in)

TOP PLATE

 $W_{H} = Pe/(ah+0.667h^{2}) = 0.327733 kip/in$ $W = SQRT(W_{v}^{2}+W_{H}^{2}) = 0.572538 \text{ kip/in}$

Use 1/4-in weld Weld Thk 'w' = W/9.5 = 0.060267 in

Page 16 of 57

ANCHOR CHAIR DESIGN (e = 13-in)

vicinic in the second sec	6 0.031/(s	Design load Distance between edge of anchor hole and free edge of top plate Face to face distance between vertical plates Diameter of helical screw anchor shaft Allowable iocal shell stress per AWWA D100-11, Section 3.8.6.1	Chair height between top plate and bottom plates Top plate circumferential width Inside tank radius Tank bottom shell course thickness Maximum eccentricity of centerline of helical screw pile from outside face of tank wall AlSI T-192, Equation 5-4 Pert ² = 1945.1575 1.322 = 1.308923 1.43ah ² ft = 135.93874 (4ah ²) ^{0.333} = 44.041193 SORT(Rt)) = 0.0020665 AlSI T-192, Equation 5-3 Allowable local shell stress per AWWA D100-11, Section 3.8.6.1	th owable thickness alowable thickness wable thickness th
	Sallow a la serie de la serie	0 7	in In In In Ksi Ksi Ksi	

 $W_{H} = Pi(a+2h) = 0.468376 kip/in$ $W_{H} = Pe/(ah+0.667h^{2}) = 0.354225 kip/in$ $W = SQRT(W_{*}^{2}+W_{H}^{2}) = 0.58724 kip/in$

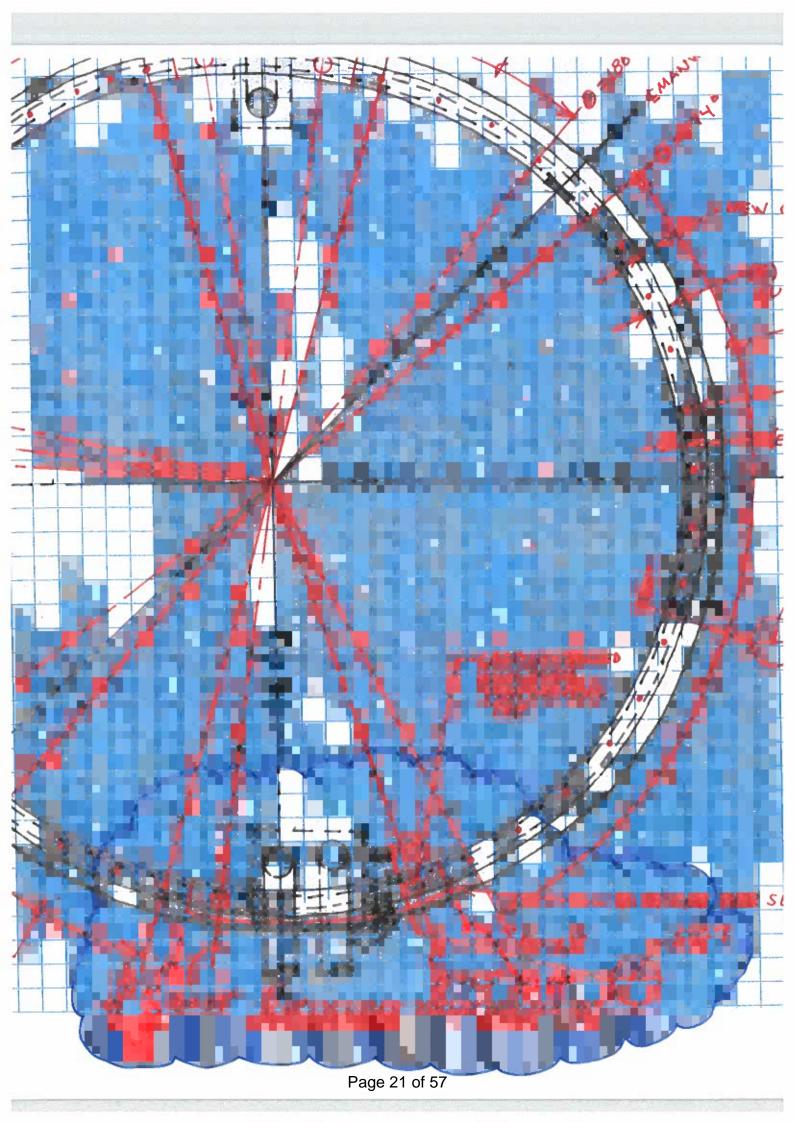
Weld Thk 'w' = W/9.5 = 0.061815 in Use 1/4-in weld

	= USER REQUIRED INPUT = CALCULATED BY THE SPREAD SHEET = CALCULATED BY THE SPREAD SHEET (IMPORTANT VALUE TO CHECK)	Ultimate (LRFD) for concrete design		┨	-			50.32 47.58	+	╞			4.48 1.75	
	= USER REQUIRED INPUT = CALCULATED BY THE S = CALCULATED BY THE S (IMPORTANT VALUE TO (ess (ASD) rew anchor gn	PS.tension = Working strees - W'/N	(kip)	39.10	36.66	34.05	30.66	26.55 21 BD	16.52	10.81	4.79	-1.42	
anway)		Working Stress (ASD) for helical screw anchor design		(kip)	43.66	41.23	38.62	35.22	31.11	21.09	15.38	9.35	3.14	
n, at M			<u>_ </u>	(kip)	4.56	4.30	4.56	4.56	4.56	4.56	4.56	4.56	4.56	
(e = 13-i			$P_{u} = (1/0.7) x$ M _S (X _i)/l _y	(kip-ft)	62	59	55	50	44 28	30	22	13	4	
OUT AND ANALYSIS (e = 13-in, at Manway)		UM BER	P working atreas = $M_S(X_i)/(I_y \times$ No. piles along ordinate at X _i)	(kip-ft)	4	43	39	35	31	21	15	0		
ND AN	EX.	LOCATION NUMBER	No of piles at X,		20	2	2	2	~ ~	2	5	2		ft*
		BILE		(ft ⁴)	1,285	1,240	1.005	836	653	300	159	59		24,688
HELICAL PILE LAY		= HELICAL	PILE Area	(ft²)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 Σ =	$I_x = I_y = 4 \times \Sigma =$
LICAL		8	X _i = (R x COS0 _i)	(ft)	35.85	35.3U 33.85	31.71	28.92	25.55	17.31	12.63	7.68		<u>*</u>
H	t t t t t t t t t t t t t t t t t t t	t	cose		.66.0			0.80	- 1			0.21		
	60,134 kip-ft 420 in 0.541 in 13 in 36.12842 ft 44 8.181818 degrees 5.16 ft 70 ft		ő	(degrees)	7.094	12.2727 20.45452	28.63634	36.81815	44.99997	53.161/9 61.36361	69.54543	77.72725	85.90906	
	Ms = Tank inside radius 'r' = Tank wall thickness 't = Pile eccentricity 'e' = R = r, + t + e = Λθ, = Pile Spacing 's' = RΔθ, = Tributary dead load: W, =		HELICAL PILE LOCATION NUMBER						9				11	

Page 18 of 57

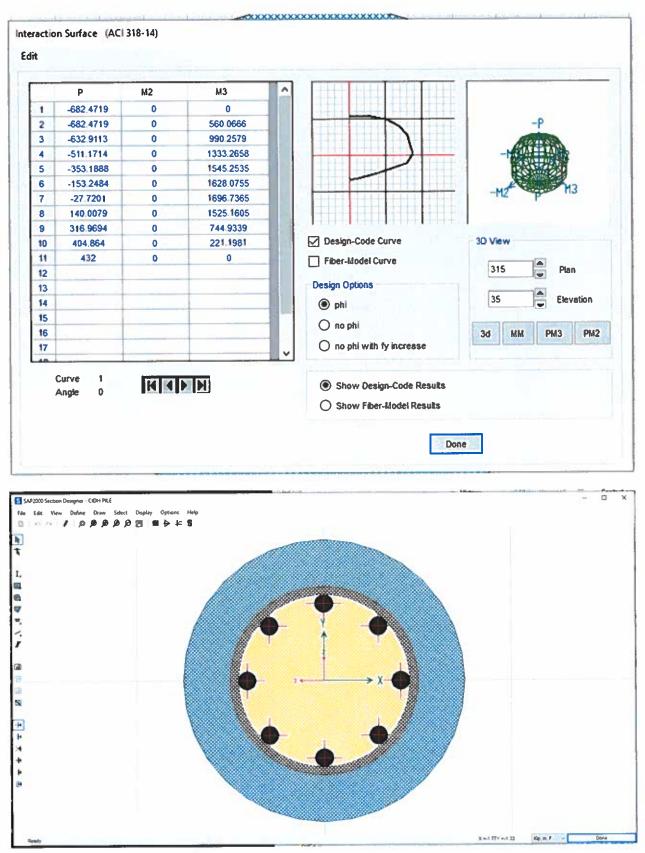
ANCHOR CHAIR DESIGN (e = 13-in, at Manway)

TOP PLATE

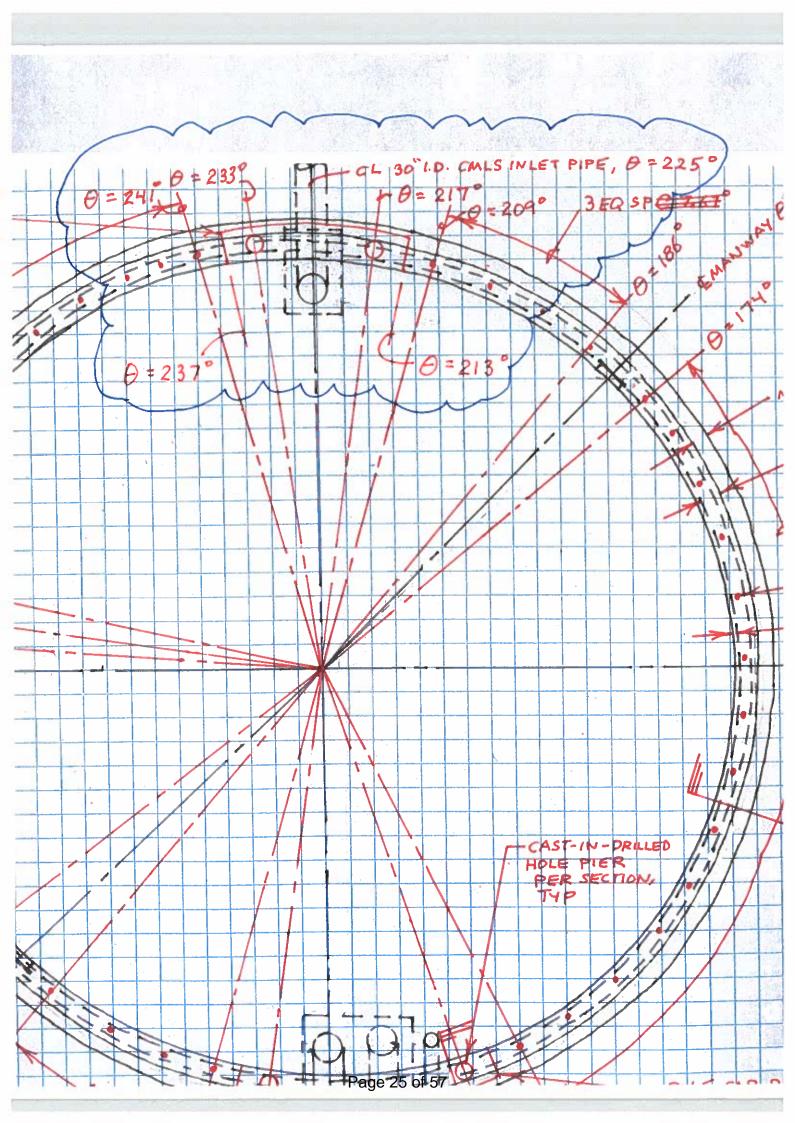

Design load Distance between edge of anchor hole and free edge of top plate Face to face distance between vertical plates Diameter of helical screw anchor shaft Allowable locat shell stress per AWWA D100-11, Section 3.8.6.1		Chair height between top plate and bottom plates Too olare circumferential width	nside tank radius	Tank bottom shell course thickness Maximum eccentricity of centerline of helical screw pile from outside face of tank wall	Minimum bottom plate thickness AISI T-192, Equation 5-4	(4ah ²) ^{0 300} = 44.041193 SQRT(Rt)) = 0.0020565 AISI T-192, Equation 5-3	Allowable local shell stress per AWWA D100-11, Section 3.8.6.1		Top plate thickness	Top plate radial width Bottom plate radial width	Side plate minimum allowable thickness	Or, side plate minimum alowable thickness	Site plate minimum altowable thickness	Average side plate width		
43.66 kip 3 in 11.5 in 11.5 in 2.0 ksi 1.75		40 in 13.5 in	420 in	0.541 in 13 in	0.991608	(4ah ²) ^{0,330} = 0.031/(SORT(Rt)) = S = 18.09254 ksi AISI T-192, Eć	20 ksi O.K. S < Allowable		1.75 in	18 6 in	0.5 in	1.53 in	1.53 in	12 in	18.36 1.7465	OK IL DISE
Choos c =	CHAIR HEIGHT	11 11 E a		0 	m = Z =	S S	S _{altow} =	VERTICAL SIDE PLATES	U U	b = bmnd	(I) _{min} =	OR, (j) _{min} = 0.04(h-c) =		k _{avg} =	jk _{avg} = P/25 =	

WELDS

= 18.36 1.7465 O.K. jk > P/25

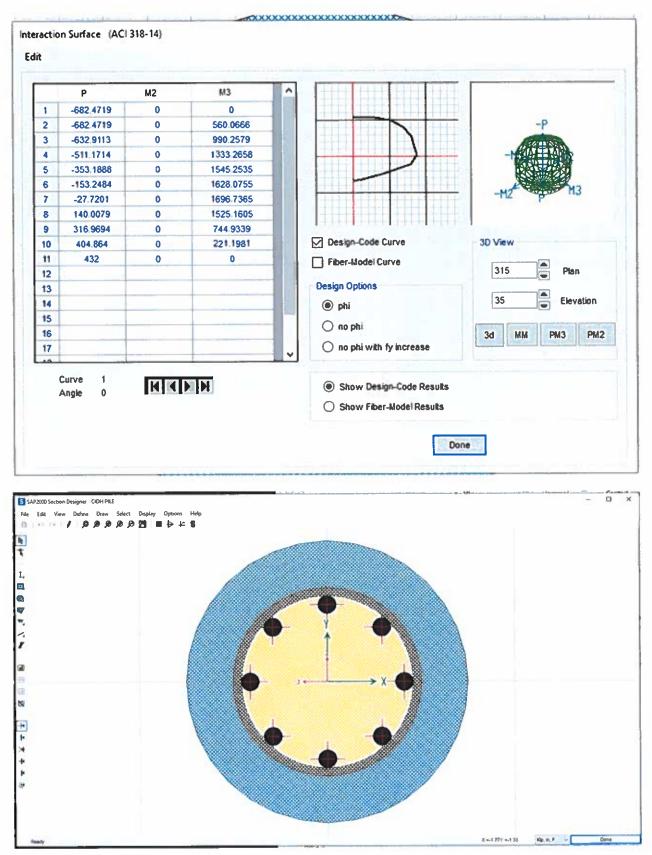

0 466979 kip/in	0.353169 kip/in	0.585489 kip/in	0.06163 in	Use 1/4-in weld
W. = P/(a+2h) = 0.466979 kio/in	$W_{H} = Pe/(ah+0.667h^{2}) = 0.353169 kip/in$	$W = SQRT(W_v^2 + W_H^2) = 0.585489 \text{ kip/in}$	Weld Thk 'w' = W/9.5 =	

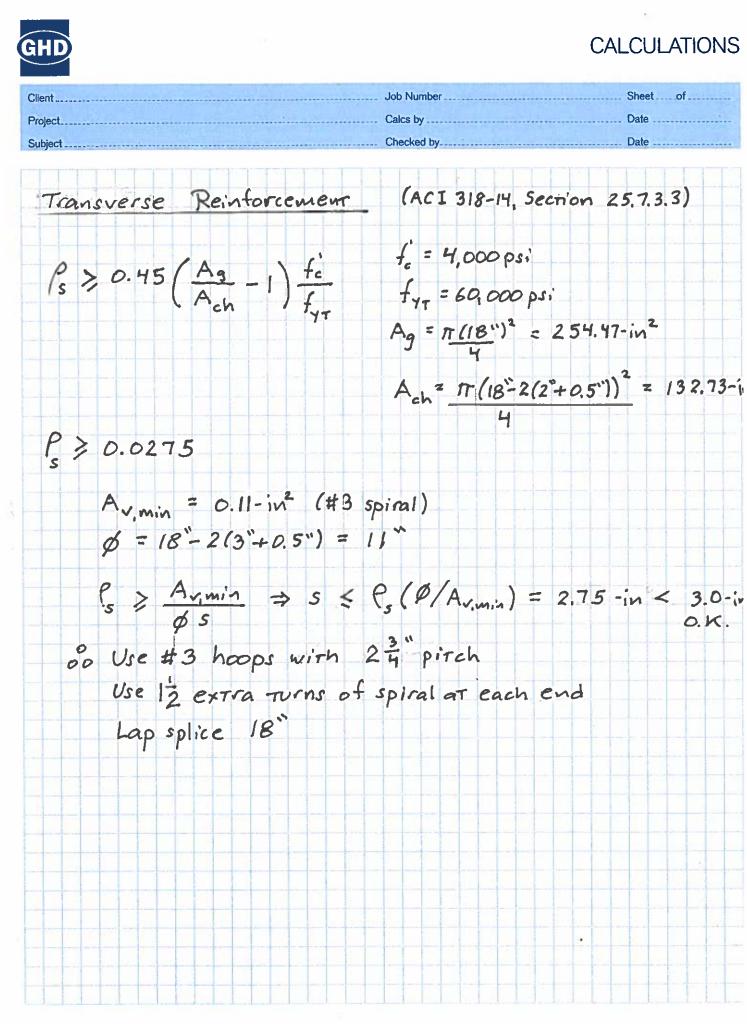
GHD		CALCULATIONS
Client	Job Number	Sheetof
Project	Calcs by	Date
Subject	Checked by	Date
Pile Cap Beam Design		
Design of supporting CIDH	piles	
See figure on following piles. $\theta = 33^{\circ}$ To $\theta = 69^{\circ}$ $s = r\theta = 35^{\circ}(36^{\circ})$	page for layout c	of beam and
tin	LOCATION OF CENTRON	> OF ARC
1 ···· [0=14 ·	x = 35 - 35 co	s(36 %2)
R= 36 R= 35	X = 1.71 36.04 LEVER ARM	
LEVER ARM = 36.04 cos ($14^{\circ} - (35 - \frac{1.71}{2}) =$	0.82 44.0" per 8.182 of arc
UPLIFT FORCE AT CENTE		
MOMENT ON PILE HEAD	$D = \frac{1}{2}(194^{6})0.82^{2} =$	79.5 ASD
VERTICAL FORCE ON	$PILE HEAD = \pm \frac{1}{2} (19)$	4")=±97 " ASD
	P= 97 K × 1.43 = 13	
-18\$ Tu	=79.5" × 1,43 = 11	
#9 Longiru	dinal	54" [~]
3°CLR	TOTAL)	



		CALCULATIONS
GHD		CALCOLATIONO
Client	Job Number	Date
Project	Calcs by Checked by	Date
Per the attached SAP outp $P_{\nu} = \pm 139^{\kappa}$ (Tension) 167.72^{κ} 166.72^{κ} 139^{κ} 140.00^{κ} $\phi M_{n} = 1696.74^{n\kappa} - 17.8$	$I_{1}696.74$ "" $\emptyset M_{A}$ $I_{1}525.16$ "" $I_{1}58$ "($-\frac{166.72}{167.72}$) =	
$CP_{y} = -139^{K}$ (compression	iik	
$ \begin{array}{c} 125.53^{*} \\ \hline 16.25^{*} \\ -139^{*} \\ -27.72^{*} \\ \hline 0 \\ M_{1} = 1,628.08^{*} \\ + 68 \end{array} $	1,696.74	68.66 "" = 1.637 ""
M _U = 1.357 "* -	(125.53^{m}) $< \phi M_{n} = 1,637^{n}$	O.K.
Page 22	of E7	

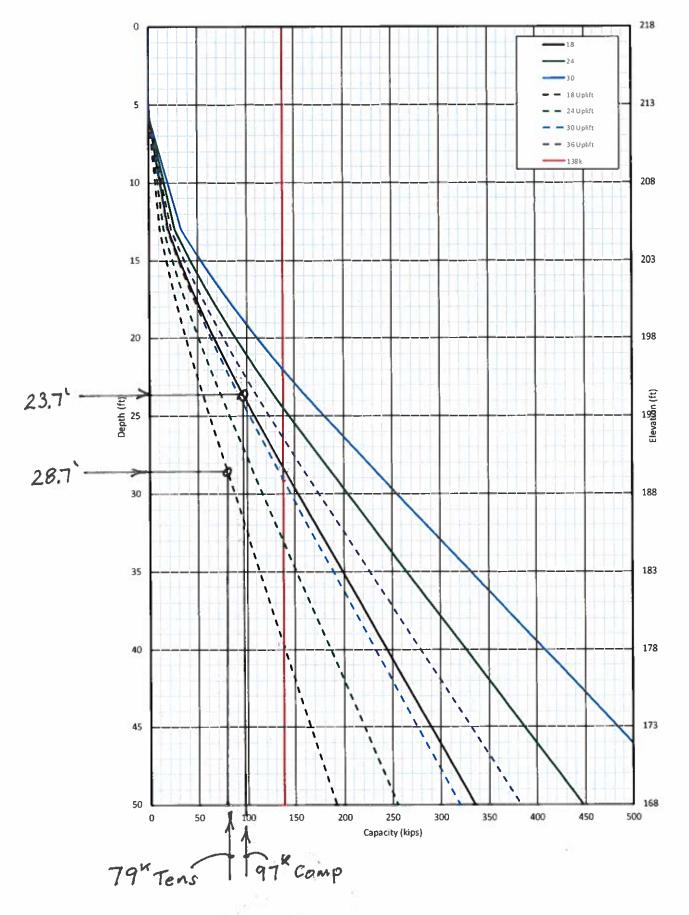
CIDH PILE INTERACTION DIAGRAM:



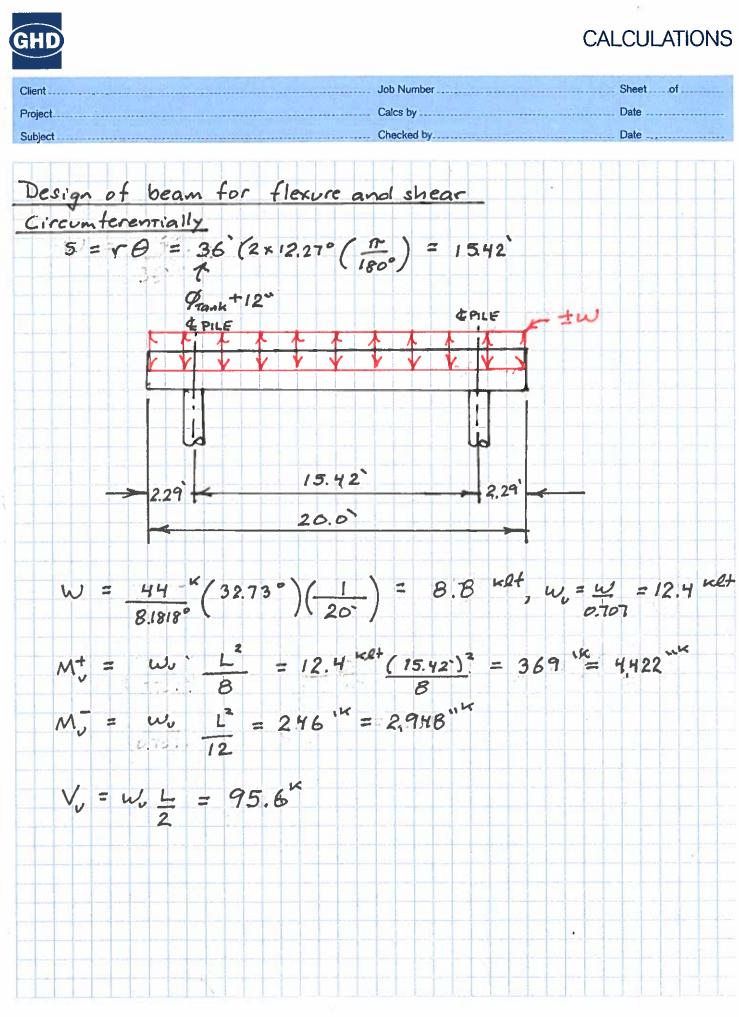

		17.
GHD		CALCULATIONS
Client Project Subject	Job Number Calcs by Checked by	Date Date
Pile Cap Beam Design		
Design of supporting CID See figure on following piles. $\Theta = 213^{\circ}$ to $\Theta = 23^{\circ}$ $S = r\Theta = 35^{\circ}(24)$, page for layour 7°	of beam and
0: 8°	LOCATION OF CENTR	
	$X = 0.085^{\circ}$ 36.04° - LEVER ARM $(25^{\circ}) - (25^{\circ}) 0.085^{\circ})$	- 0.73 - 0
LEVER ARM = 36.04 cos (UPLIFT FORCE AT CENT MOMENT ON PILE HEA	EROFARC = 24° (44 K) = 129 (conservar)
VERTICAL FORCE ON	$PILE HEAD = \pm \frac{1}{2}(1)$	29*) = 65 × ASD
	$P_0 = 65^{k} \times 1.43 = 0$,= 4.7 ^k × 1.43 = 0 = 6	
#9 Longiru bars (B 3"CLR		
	81 051 11 440	a lan bi na bahar

GHD		CAI	_CULATION
Client		·	Sheetof Date
Per the attached $CP_{\mu} = +92^{\kappa}$			
167.72 ⁴ 120.72 ⁴ 93 140.	2 ^K 9M 00 ^K 1,52	5.16 **	1. 58``
	76.74 = 171.58		s K
-125.53 -65.28 -93 -153.	2 K 1,6 K ØN	96.74 "K 10 -68 8.08 "K	. 66 ["]
	6.74 ^{""} 68.66 ""(= 807 " ^κ < φΜ,		61 ^{ur} O.K.
	Page 26 of 57		

CIDH PILE INTERACTION DIAGRAM:

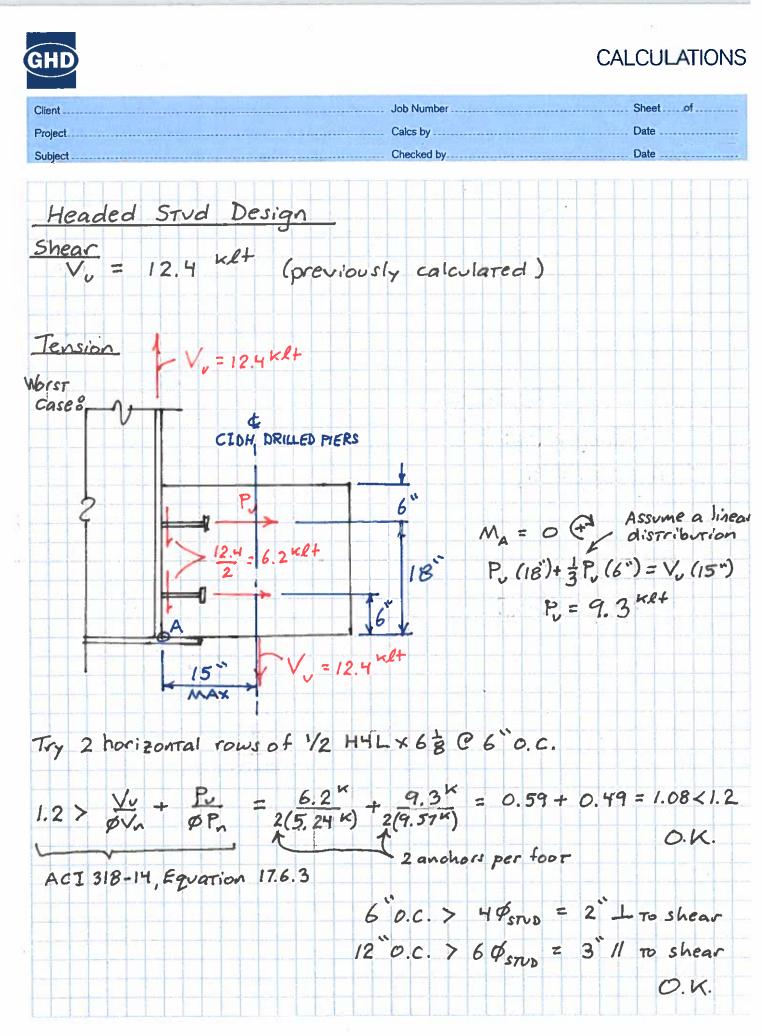


Page 28 of 57


ent	Job Number	Sheet of
ject	Calcs by	Date
bject	Checked by	Date
IDH Pile Length		
		·····
Per the attached allowable	bearing capacity	graph use
		<i>J I</i>
33' length for the pile.		
97 " compression < 15	55° comp allowable	C 30' embedne
79 " Tension " < 9"	o " Tens allowable	@ 30' embedne
* Tension on pile (upli:	fr)	
Tributary Dead Load		
WT of Tank and	$contents = 4.56^{\circ}$	
	BIBIB	
Wt of pile cap = 2	2.5 (2.0') 0.15 Klt =	0.75 4
$S = r\theta = 35'(36')$	180°	
The tributary ang	ular span to a pil	$e is \frac{36}{2} = 18$
00 (PD) Tributary = 18° To pile	$(4.56^{\circ}) + 35(18^{\circ})$	$\left(\frac{1F}{1000}\right) 0.75 =$
To pile	8.1818 /	100 ' #
······································		
. The Tension uplift	= 97^ -18.3 = 78	7 ~ 79~

Page 29 of 57

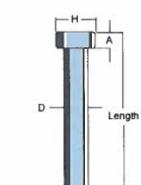
Korblex - EQ Loading Allowable Vertical Capacity (kips)



Page 30 of 57

Page 31 of 57

LEGEND:	Ϊ 	= USER REQUIRED INPUT					
	= C	= CALCULATED BY THE SPREAD SHEET	PREAD SHEET				
	5 =	ALCULATED BY THE SF	= CALCULATED BY THE SPREAD SHEET (IMPORTANT VALUE TO CHECK)	VALUE TO CHEC	(X)		
depth of section 'h' =	ction 'h' =	24 in	mexure =	0.9	hoop bar diameter =	0.625 in	
width of section 'bw' =	tion 'b _w ' =	30 in	¢shear =	0.9	longitudinal bar diameter =	1 00 in	
ho	hoop size =	0.625 in	thereion =	0.75	clear cover =	2.00 in	f _M = 60,000 psi
	cover =	2 in	λ =	1.00 (NWC)			
DESIGN FOR FLEXURE			DESIGN FOR SHEAR				
$(M_{u})^{*} =$	4422 in-kip	đ	-">	95.6 kip			
(A ₃)bot bars =			Av =	0.2 in ²			
= p	~		 0	4			
$\phi(A_s)_{bot \text{ bars}} f_y(d-0.59A_s f_y(f_c^{\circ}b)) =$	4	a	$V_c = 2\lambda SORT(f_c)b_wd =$	82 kip			
DCR =	1.00 O.K.		$V_s = A_v f_y d/s =$	65 kip			
$(M_{0})^{-} =$	2948 in-kip	a	$\phi(V_c+V_s) =$	111 kip			
(As)top bars =	4 in ²		DCR =	0.86 O.K.			
$\phi(A_s)_{\text{top bars}}f_y(d-0.59A_s}f_y(f_c^{\circ}b)) = D^{\circ}CB = D^{$	4,430 in-kip	٩	A/S =	0.0500			
DESIGN FOR TORSION	L						
Threshold Torsion		Torsional	Torsional Strength		Cross-sectional dimensions check	ensions check	
T.=	: 1396 in-kip	p A _{oh} =			= ">	σ	
A _{cp} =	720 in ²	Ao =	36		b _w d		
11 B	108 in	At =	0.6 in ²		T.=		
$T_{th} = \lambda SQRT(f_c)(A_{cm}^2/p_{cm}) =$	a 303.58 in-kip	p s=	12 in		P, =	89.5 in	
φT _m =	228 in-kip	= 0	45 degrees	rees	A _{oh} =	464.1	
DCR =	6.13 N.G. > 1.0	. > 1.0 A ₁ =	4.00 in ²		$V_{c} = 2\lambda SQRT(f_{c})b_{w}d =$	82 kip	
DESIGN FOR	DESIGN FOR TORSION REQUIRED	EQUIRED Ph =	89.5 in	SQR	SQRT((V_((b_d)) ² +(T_Ph/1.7A_h ²) ²) =	0.3716 lb/in ²	ACI 318-14,
		AoA,f_,)cot(197 ft-kip		II Ф	0.75	Equation 22.7.7.1a
		(2A _o A _f t _v)cot0/p _h =	176 ft-kip	٩	<pre> \u00e9(Ve/bwd+8SQRT(fc')) = </pre>	474.34 lb/in ²	
		φT,=	132 ft-kip	Р		0.K.	
		="L	116 ft-kip	a.			
		DCR =	0.88 O.K.	. 4			
		A ₄ /s =	0.0500				
	Ą	$A_R = A_{vvl}/s = A_s/s + 2A_s/s =$	0.1500 in ² /in				
Check n	ninimum torsio	Check minimum torsion reinforcement required			Determine number of longitudinal bars required	required	
		0.75(SQRT(f,'))bw/fy =			No of peripheral longitudinal bars =		
		50bw/f _M =		c	$(A_s)_{req'd} = (A_s)_{hot} + (A_s)_{hop} + A_t =$	12.00 in ²	
		A _{s.mn} =	0.0250 in ² /in	c	(A ₅) _{reatia} /(No. bars) =	0.86	
	Try clo	Try closed hoops with A _R /leg =			Bar Size Required =	No. 9	
		SR = 2Av12/AR =			Check minimum area of longitudinal reinforcement required	nforcement requir	red
Check m	aximum soacin	Check maximum spacing of shear reinforcement			$5SORT(f_{c}^{*})A_{co}/f_{v}-(A_{v}s)p_{h}(f_{v}/f_{v}) = -0.7053$	-0.7053	
		Smax = d/2 < 24" O.K.	0 K	5S(5SQRT(f _c)A _{av} /f _v -(25b _w /f _v)p _h (f _y /f _y) =	3.7947	
Check may	ximum spacino	Check maximum spacing of torsion reinforcement			As,mh =	0.7053	
		-4	U EU S			XC	
		- doorth	ne:n			- WA	
		= ⁴ d	⊑ 06				



Page 33 of 57

Headed Anchors

itock Sizes				
D	L		н	Part No.
Stud Dia.	Length	A		Part No.
	3/4	1		102-053-031
1/4 H4L	1 1/8			101-053-168
1/4/146	2 11/16			101-053-031
	4 1/8	0.187	0.500	101-053-033
	1 3/8			101-053-116
	1 5/8			101-053-107
	21/8			101-053-037 101-053-039
3/8 H4L	2 5/8 3 1/8			101-053-039
	4 1/8			101-053-043
	51/8		-	102-053-005
	61/8	0.281	0.750	101-053-045
	21/8			101-053-047
	2 5/8			101-053-081
	3 1/8			101-053-002
	3 5/8		S	101-053-265
1/2 H4L	4 1/8			101-053-003
	5 1/8			102-053-030
	5 5/16			101-053-005
	61/8	0.312	1.000	101-053-008 101-053-010
	8 1/8 1 7/16	0.312	1.000	101-053-331
	2 11/16			101-053-012
	3 3/16		- I	101-053-012
	4 3/16			101-053-015
5/8 H4L	5 3/16			101-053-064
	63/16			101-053-063
	6 9/16			101-053-019
	8 3/16			101-053-023
	10 3/16	0.312	1.250	102-053-001
	3 3/16			101-098-003
	3 3/8			101-098-132
	3 7/8			101-098-127
	4 3/16			101-098-007
	47/8			101-098-131 101-098-011
	5 3/16 5 3/8			101-098-143
3/4 S3L	57/8	1.1		101-098-138
	6 3/16			101-098-015
	7 3/16			101-098-019
	8 3/16			101-098-023
	9 3/16			101-098-085
	12 3/16		а С	101-098-073
	14 3/16	0.375	1.250	101-098-025
	3 11/16			101-098-029
	4 3/16			101-098-031
	5 3/16			101-098-035
	5 11/16			101-098-037
	6 3/16 6 11/16			101-098-039 101-098-087
7/8 53L	7 3/16		9	101-098-043
	8 3/16			101-098-047
	93/16			101-098-119
	10 1/32			101-098-007
	12 3/16			101-098-066
	14 3/16	0.375	1.375	101-098-032
	4 1/4			101-098-204
1 \$3L	6 1/4			101-098-168
	81/4	0.500	1.625	101-098-177

H4L

S3L

13

Diameter	As Nominal Area	As fy Yield Lbs. (min.)	As fs Tensile Lbs. (min.)
1/4	0.049	2,405	2,994
3/8	0.110	5,632	7,179
1/2	0.196	10,014	12,763
5/8	0.307	15,647	19,942
3/4	0.442	22,531	28,716
7/8	0.601	30,667	39,086
1	0.785	40,055	51,051

Physical Properties of H4L and S3L Anchors

f, - Ultimate strength (tensile) – 65,000 psi min. (≥ 3/8° diam.)

f, • Yield strength – 51,000 psi min. (≥ 3/8" diam.)

Elongation = 20% min. (≥ 3/8° diam.)

Reduction of area - 50% min.

Cold Finished low carbon steel, ASTM A108: C = 0.23 max. Mn = 0.90 max. P = 0.040 max. S = 0.050 max.

A. - Area of stud shank

Tension Capacity

The following data are presented as guidelines only and based on embedded studs with adequate spacing for full capacity development. Appropriate safety factors should be applied based on actual use. For further information consult Nelson <u>Construction - Design Data</u>.

Shear Capacity

Headed anchors embedded in concrete with an embedment length more than four times their diameter are capable of developing full shear capacity. Spacing is not as sensitive in shear as it is in tension. Spacing four times diameter between studs in a plane perpendicular to the shear force and six times diameter in the direction of the shear force is generally adequate to develop full stud capacity. Free edges in the direction of the shear force and some spacing restrictions along a free edge apply. Consult Nelson <u>Construction - Design Data</u> and use proper safety factors and edge reinforcement. An upper bound limit for headed studs is approached at 0.75 AsFs when concrete strength exceeds 5,000 psi. Headed studs used as inserts have different values than those employed in composite design. For shear capacity of studs in composite design with and without metal deck, see the AISC code and commentary dated June 2010 and <u>ACI 318, Appendix D. Anchoring to Concrete</u>. Short Form Specification To insure that certified Nelson products are used, the following specification is suggested: "Headed anchors shall be Nelson type H4L or S3L, flux filled, welded to plates as shown on the drawings. Studs shall be made from cold-drawn steel Grades C-1010 through C-1020 per ASTM A-108 and welded pursuant to the manufacturer's recommendations."

H4L and S3L Tension Capacity in Concrete

					٤.	(5.) Factored Tension Capacity (φNb) - kips								
a si se	Length	ieter	se		U timate Anchor cips		(6.)	Server 6	Real and	(7.)			(8.)	1 - ¹⁴ -
(1.) Anchor Size	(2.) A.W. Len	D ₆ Head Diameter	Head Thickness	(3.) L,	 [4.] Factored Ulti Strength of Anc (φNs) - kips 	f'c = 3000 psi NWT	f c = 4000 psi NWT	f 'c = 5000 psi NWT	/ 'c = 3000 psi SLWT	/ c = 4000 psi	/ 'c = 5000 psi SLWT	/ 'c = 3000 psi ALWT	J < 4000 psi ALWT	f 'c S000 psi ALWT
1/4 x 3/4	0.63	0.500	0.187	0.44	2.25	0.27	0.31	0.34	0.23	0.26	0.29	0.20	0.23	0.26
1/4 x 1 1/8	1	0.500	0.187	0.81	2.25	0.67	0.78	0.87	0.57	0.66	0.74	0.51	0.58	0.65
1/4 x 2 1 1/16	2.56	0.500	0.187	2.38	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25
1/4 x 4 1/8	4	0.500	0.187	3.81	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25
3/8 x 1 3/8	1.25	0.750	0.281	0.97	5.38	0.88	1.01	1.13	0.75	0.86	0.96	0.66	0.76	0.85
3/8 x 1 5/8	1.5	0.750	0.281	1.22	5.38	1.24	1.43	1.60	1.05	1.22	1.36	0.93	1.07	1.20
3/8 x 2 1/8	2	0.750	0.281	1.72	5.38	2.07	2.39	2.68	1.76	2.04	2.28	1.56	1.80	2.01
3/8 x 2 5/8	2.5	0.750	0.281	2.22	5.38	3.04	3.51	3.93	2.59	2.99	3.34	2.28	2.63	2.95
3/8 x 3 1/8	3	0.750	0.281	2.72	5.38	4.13	4.76	5.33	3.51	4.05	4.53	3.09	3.57	3.99
3/8 x 4 1/8	4	0.750	0.281	3.72	5.38	5.38	5.38	5.38	5.38	5.38	5.38	4.95	5.38	5.38
3/8 x 5 1/8	5	0.750	0.281	4.72	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.38
3/8 x 6 1/8	6	0.750	0.281	5.72	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.38
1/2 x 2 1/8	2	1.000	0.312	1.69	9.57	2.02	2.33	2.61	1.72	1.98	2.21	1.51	1.75	1.95

							,	F) F+	and Transit	C	14 f Mik	.)		
					ۍ اور	ALCONT NO.		5.) Pacto	red Tensi			o) - Kips		
					뚢	(JED.)	(6.)	a de la construcción de la constru	1.2.1	(7.)	1.203	.24	(8.)	1.1.1.163
(1.) Anchor Size	(2.) A.W. Length	D _b Head Diameter	Head Thickness	(3.) L	(4.) Factored Ultimate Strength of Anchor (pNs) - kips	f 'c = 3000 psi NWT	f 'c = 4000 psi NWT	f 'c = 5000 psi NWT	/ 'c = 3000 psi SLWT	<i>f</i> 'c = 4000 psi SLWT	/ 'c = 5000 psi SLWT	f^{-c} = 3000 psi ALWT	f 'c = 4000 psi ALWT	/ 'c = 5000 psi ALWT
1/2 x 2 5/8	2.5	1.000	0.312	2.19	9.57	2.98	3.44	3.84	2.53	2.92	3.27	2.23	2.58	2.88
1/2 x 3 1/8	3	1.000	0.312	2.69	9.57	4.06	4.68	5.24	3.45	3.98	4.45	3.04	3.51	3.93
1/2 x 3 5/8	3.5	1.000	0.312	3.19	9.57	5.24	6.05	6.76	4.45	5.14	5.75	3.93	4.54	5.07
1/2 x 4 1/8	4	1.000	0.312	3.69	9.57	6.52	7.53	8.41	5.54	6.40	7.15	4.89	5.64	6.31
1/2 x 5 1/8	S	1.000	0.312	4.69	9.57	9.34	9.57	9.57	7.94	9.17	9.57	7.01	8.09	9.04
1/2 x 5 5/16	5.19	1.000	0.312	4.88	9.57	9.57	9.57	9.57	8.42	9.57	9.57	7.43	8.58	9.57
1/2 x 6 1/8	6	1.000	0.312	5.69	9.57	9.57	9.57	9.57	9.57	9.57	9.57	9.36	9.57	9.57
1/2 x 8 1/8	8	1.000	0.312	7.69	9.57	9.57	9.57	9.57	9.57	9.57	9.57	9.57	9.57	9.57
5/8 x 2 11/16	2.5	1.250	0.312	2.19	14.96	2.98	3.44	3.84	2.53	2.92	3.27	2.23	2.58	2.88
5/8 x 4 3/16	4	1.250	0.312	3.69	14.96	6.52	7.53	8.41	5.54	6.40	7.15	4.89	5.64	6.31
5/8 x 6 9/16	6.38	1.250	0.312	6.06	14.96	13.74	14.96	14.96	11.68	13.48	14.96	10.30	11.90	13.30
5/8 x 8 3/16	8	1.250	0.312	7.69	14.96	14.96	14.96	14.96	14.96	14.96	14.96	14.71	14.96	14.96
5/8 x 10 3/16	10	1.250	0.312	9.69	14.96	14.96	14.96	14.96	14.96	14.96	14.96	14.96	14.96	14.96
3/4 x 2 3/16	2	1.250	0.375	1.63	21.54	1.91	2.20	2.46	1.62	1.87	2.09	1.43	1.65	1.85
3/4 x 3 3/16	3	1.250	0.375	2.63	21.54	3.91	4.52	5.05	3.33	3.84	4.29	2.94	3.39	3.79
3/4 x 3 3/8	3.19	1.250	0.375	2.81	21.54	4.34	5.01	5.60	3.69	4.26	4.76	3.26	3.76	4.20
3/4 x 3 7/8	3.69	1.250	0.375	3.31	21.54	5.55	6.41	7.16	4.72	5.44	6.09	4,16	4.80	5.37
3/4 x 4 3/16	4	1.250	0.375	3.63	21.54	6.35	7.33	8.20	5.40	6.23	6.97	4.76	5.50	6.15
3/4 x 4 3/10	4.19	1.250	0.375	3.81	21.54	6.85	7.91	8.84	5.82	6.72	7.52	5.14	5.93	6.63
3/4 x 4 7/8	4.69	1.250	0.375	4.31	21.54	8.24	9.52	10.64	7.00	8.09	9.04	6.18	7.14	7.98
3/4 x 5 3/16	4.05	1.250	0.375	4.63	21.54	9.15	10.57	11.82	7.78	8.98	10.04	6.86	7.93	8.86
3/4 x 5 3/10 3/4 x 5 3/8	5.19	1.250	0.375	4.81	21.54	9.71	11.22	12.54	8.26	9.53	10.66	7.29	8.41	9.41
3/4 x 5 7/8	5.69	1.250	0.375	5,31	21.54	11.27	13.01	14.55	9.58	11.06	12.36	8.45	9.76	10.91
3/4 x 5 7/6 3/4 x 6 3/16	5.09	1.250	0.375		21.54	12.28	14.18	15.85	10.43	12.05	13.47	9.21	10.63	11.89
3/4 x 0 3/10 3/4 x 7 3/16	7	1.250	0.375	5.63	21.54	15.69	14.18	20.26	13.34	15.40	17.22	<u> </u>	13.59	15.19
	8		0.375	6.63	21.54	19.37	21.54	20.20	15.34	19.02		11.77	16.78	18.76
3/4 x 8 3/16		1.250	-	7.63				-		-	21.26			
3/4 x 9 3/16	9	1.250	0.375	8.63	21.54	21.54	21.54	21.54	19.81	21.54	21.54	17.48	20.19	21.54
3/4 x 10 3/16	10	1.250	0.375	9.63	21.54 21.54	21.54	21.54 21.54	21.54	21.54 21.54	21.54	21.54	20.61 21.54	21.54	21.54
3/4 x 12 3/16	12	1.250	0.375	11.63	29.31	21.54 5.08	5.87	6.56	4.32	21.54 4.99	21.54	3.81	<u>∠1.54</u> 4.40	21.54 4.92
7/8 x 3 11/16	3.5			3.13	-		7.33	8.20	4.32 5.40	-	5.58	4.76	5.50	
7/8 x 4 3/16	4	1.375	0.375	3.63	29.31	6.35		+	-	6.23	6.97 10.04		+	6.15
7/8 x 5 3/16	5	1.375	0.375	4.63	29.31	9.15	10.57	11.82	7.78	8.98		6.86	7.93	8.86
7/8 x 5 11/16	5.5	1.375	0.375	5.13	29.31	10.68	12.33	13.78		10.48	11.72	8.01	9.25	10.34
7/8 x 6 3/16	6	1.375	0.375	5.63	29.31	12.28	14.18	15.85	10.43	12.05	13.47	9.21	10.63	11.89
7/8 x 6 11/16	6.5 7	1.375	0.375	6.13	29.31 29.31	13.95 15.69	16.11 18.12	18.01	11.86 13.34	13.69 15.40	15.31	10.46	12.08 13.59	13.51 15.19
7/8 x 7 3/16			_	6.63	-	_	22.37	+	15.34		21.26		16.78	
7/8 x 8 3/16	8	1.375	0.375	7.63	29.31	19.37	-	25.01	-	19.02	· · · · · · · · · · · · · · · · · · ·	14.53 17.48		18.76
7/8 x 9 3/16	9	1.375	0.375	8.63	29.31	23.31	26.91	29.31	19.81	22.88	25.58		20.19	22.57
7/8 x 10 1/32	9.84	1.375	0.375	9.47	29.31	26.81	29.31	29.31	22.79	26.31	29.31	20.11	23.22	25.96
7/8 x 12 3/16	12	1.375	0.375	11.63	29.31	29.31	29.31	29.31	29.31	29.31	29.31	27.67	29.31	29.31
7/8 x 14 3/16	14	1.375	0.375	13.63	29.31	29.31	29.31	29.31	29.31	29.31	29.31	29.31	29.31	29.31
1 x 4 1/4	4	1.625	0.5	3.50	38.29	6.03	6.96	7.78	5.12	5.91	6.61	4.52	5.22	5.83
1 x 6 1/4	6	1.625	0.5	5.50	38.29	11.87	13,71	15.32	10.09	11.65	13.02	8.90	10.28	11.49
1 x 8 1/4	8	1.625	0.5	7.50	38.29	18.90	21.82	24.40	16.07	18.55	20.74	14.18	16.37	18.30

Notes: (1) Stock anchor size.. (2) A.W. = Length overall after welding. (3) Le = Length of embedment under head of anchor. Ignores thickness of an embedment plate which will increase Le. (4) gNs = 0.75AsFs

(5.) gNb = 0.70xλx2+λf/3 (2), eexp1.5, where gNb>gNs, gNs governs as gNn. Assumes no supplemental reinforcement. Pullout and side-face blowout strengths not considered. (6) NM7 = normal-weight concrete (A = 1.8), (7) SLWT = snd lightweight concrete (A = 0.85), (8) ALWT = All lightweight concrete (A = 0.75).

H4L and S3L Shear Capacity in Concrete

Sec. 3	Permit l				(4.)(5.)	Factore	d Shear B	reakout	Capacity	(φVb) -	kips		Notes:
1.100	100	12	· ·		(6.)			(7.)	1000	1993	(8.)	(i)	(1.) Stock anchor size.
(1.) Anchor Size	A.W. Length	Diam.	tored Steel Strength s) - kips		10000	1000	all and a second	1.1					
5	Ee.	ē	Factored St sear Streng (@Vs) - kips	psi	psi	psi	ISC	psi	psi	psi	psi	ps.	(2) A.W. = Length overall after welding.
÷	5	l/Ds (No. of	Factored lear Stren (øVs) - kip	8 L	0	0	= 3000 SLWT					- 5000 ALWT	
An	4	Ň	3.) Fact Shear (wvs	3000 NWT	4000 NWT	5000 NWT	30 N	4000 5LWT	- 5000 SLWT	3000 ALWT	4000 ALWT	L N SO	(3.) φVs = 0.65AsFs
121	8	ě.	15,4 1		<u> </u>	v 2	li ∆	2	S S	U K	, v ₹	- A	(4.) φVb = 0.70xλx7*(Le/Da)-
	1.040	1/1	(F) 45		2				2	-	2	2	exp0.2*√(Da)*√(j*c)*(edge distance-exp1.S), where Le/Da<
												E E	alternately (if less)
1/4 x 3/4	0.63	1.75	1.95	1.95	1.95	1.95	1.88	1.95	1.95	1.65	1.91	1.95	φVb = 0.70xλu9√(f'c)*(edge distance-exp1.5). Where
1/4 x 1 1/8	1	3.25	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.87	1.95	1.95	φVb>φVs, φVs governs as φVn.
1/4 x 2 11/16	2.56	9.50	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	Assumes no supplemental reinforcement. Pryout strength
1/4 x 4 1/8	4	15.25	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	not considered.
3/8 x 1 3/8	1.25	2.58	4.67	2.92	3.37	3.77	2.48	2.87	3.20	2.19	2.53	2.83	(S.) A six-inches edge distance
3/8 x 1 5/8	1.5	3.25	4.67	3.06	3.53	3.95	2.60	3.00	3.36	2.29	2.65	2.96	perpendicular to load is
3/8 x 2 1/8	2	4.58	4.67	3.28	3.78	4.23	2.78	3.21	3.59	2.46	2.84	3.17	assumed.
3/8 x 2 5/8	2.5	5.92	4.67	3.45	3.98	4.45	2.93	3.38	3.78	2.59	2.99	3.34	(6.) NWT = normal- weight
3/8 x 3 1/8	3	7.25	4.67	3.59	4.15	4.63	3.05	3.52	3.94	2.69	3.11	3.48	concrete (A = 1.0).
3/8 x 4 1/8	4	9.92	4.67	3.82	4.41	4.67	3.25	3.75	4.19	2.87	3.31	3.70	(7.) SLWT = sand lightweight
3/8 x 5 1/8	5	12.58	4.67	4.01	4.63	4.67	3.41	3.93	4.40	3.01	3.47	3.88	concrete (A = 0.85).
3/8 x 6 1/8	6	15.25	4.67	4.17	4.67	4.67	3.54	4.09	4.57	3.12	3.61	4.03	(8.) ALWT = All lightweight
1/2 x 2 1/8	2	3.38	8.30	3.56	4.11	4.59	3.02	3.49	3.90	2.67	3.08	3.44	concrete ($\lambda = 0.75$).
1/2 x 2 5/8	2.5	4.38	8.30	3.75	4.33	4.84	3.18	3.68	4.11	2.81	3.24	3.63	1
1/2 x 3 1/8	3	5.38	8.30	3.90	4.51	5.04	3.32	3.83	4.28	2.93	3.38	3.78	1
1/2 x 3 5/8	3.5	6.38	8.30	4.04	4.66	5.22	3.43	3.97	4.43	3.03	3.50	3.91	1
1/2 x 4 1/8	4	7.38	8.30	4.16	4.80	5.37	3.54	4.08	4.56	3.12	3.60	4.03	
1/2 x 5 1/8	5	9.38	8.30	4.36	5.04	5.63	3.71	4.28	4.79	3.27	3.78	4.23	1
1/2 x 5 5/16	5.19	9.75	8.30	4.40	5.08	5.68	3.74	4.32	4.83	3.30	3.81	4.26	
1/2 x 6 1/8	6	11.38	8.30	4.54	5.24	5.86	3.86	4.45	4.98	3.40	3.93	4.39	1
1/2 x 8 1/8	8	15.38	8.30	4.82	5.56	6.22	4.10	4.73	5.29	3.61	4.17	4.66	1
5/8 x 2 11/16	2.5	3.50	12.96	4.01	4.63	5.17	3.41	3.93	4.40	3.00	3.47	3.88	
5/8 x 4 3/16	4	5.90	12.96	4.45	5.14	5.74	3.78	4.37	4.88	3.34	3.85	4.31	
5/8 x 6 9/16	6.38	9.70	12.96	4.91	5.67	6.34	4.18	4.82	5.39	3.68	4.25	4.76	1
5/8 x 8 3/16	8	12.30	12.96	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	
5/8 x 10 3/16	10	15.50	12.96	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	1
3/4 x 2 3/16	2	2.17	18.67	3.99	4.60	5.15	3.39	3.91	4.38	2,99	3.45	3.86	1
	3	3.50	18.67	4.39	5.07	5.67	3.73	4.31	4.82	3.29	3.80	4.25	1
3/4 x 3 3/16		3.75	18.67	4.39	5.14	5.74	3.78	4.37	4.88	3.34	3.85	4.31	1
3/4 x 3 3/8	3.19	4,42	18.67	4.45	5.31	5.94	3.91	4.57	5.05	3.45	3.98	4.45	1
3/4 x 3 7/8		-			+	6.04	3.98	4.59	5.14	3.51	4.05	4.53	1
3/4 x 4 3/16	4	4.83	18.67	4.68	5.41 5.46	6.10	4.02	4.59	5.14	3.51	4.05	4.53	1
3/4 x 4 3/8	4.19	5.08	18.67		5.60	+	4.02	4.04	5.19	3.55	4.10	4.58	1
3/4 x 4 7/8	4.69	5.75	18.67	4.85	5.68	6.26 6.35	4.12	4.82	5.39	3.69	4.20	4.09	
3/4 x 5 3/16	5	6.17 6.42	18.67 18.67	4.92	5.72	6.40	4.18	4.86	5.44	3.72	4.29	4.70	4
3/4 x 5 3/8	5.19		+	-	5.72	6.52	4.21	4.80	5.55	3.72	4.29	4.80	-
3/4 x 5 7/8	5.69	7.08	18.67	5.05	-	+	-	4.90	5.61	3.83	4.38	4.89	-
3/4 x 6 3/16	6	7.50	18.67	5.11	5.90	6.60	4.34		5.80	3.83	4.43	5.11	•
3/4 x 7 3/16	7	8.83	18.67	5.43	6.10 6.27	6.82 7.01	4.49	5.18 5.33	5.96	4.07	4.57	5.26	- C
3/4 x 8 3/16	-	10.17	18.67			+	-	-	-	4.07	4.70	5.20	
3/4 x 9 3/16	9	11.50	18.67	5.57	6.43	7.19	4.73	5.46	6.11		4.82	-	-
3/4 x 10 3/16	10	12.83	18.67	5.69	6.57	7.35	4.84	5.59	6.24	4.27		5.51	1
3/4 x 12 3/16	12	15.50	18.67	5.91	6.82	7.63	5.02	5.80	6.49	4.43	5.12	5.72	1
7/8 x 3 11/16	3.5	3.57	25.41	4.76	5.50	6.14	4.05	4.67	5.22	3.57	4.12	4.61	
7/8 x 4 3/16	4	4.14	25.41	4.90	5.66	6.33	4.17	4.81	5.38	3.68	4.25	4.75	
7/8 x 5 3/16	5	5.29	25.41	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	-
7/8 x 6 3/16	5.5	5.86	25.41	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	-
7/8 x 7 3/16	6	6.43	25.41	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	-
7/8 x 8 3/16	6.5	7.00	25.41	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	-
1 x 4 1/4	7	7.57	25.41	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	-
1 x 6 1/4	8	8.71	25.41	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	-
1 x 8 1/4	9	9.86	25.41	5.07	5.86	6.55	4.31	4.98	5.57	3.80	4.39	4.91	

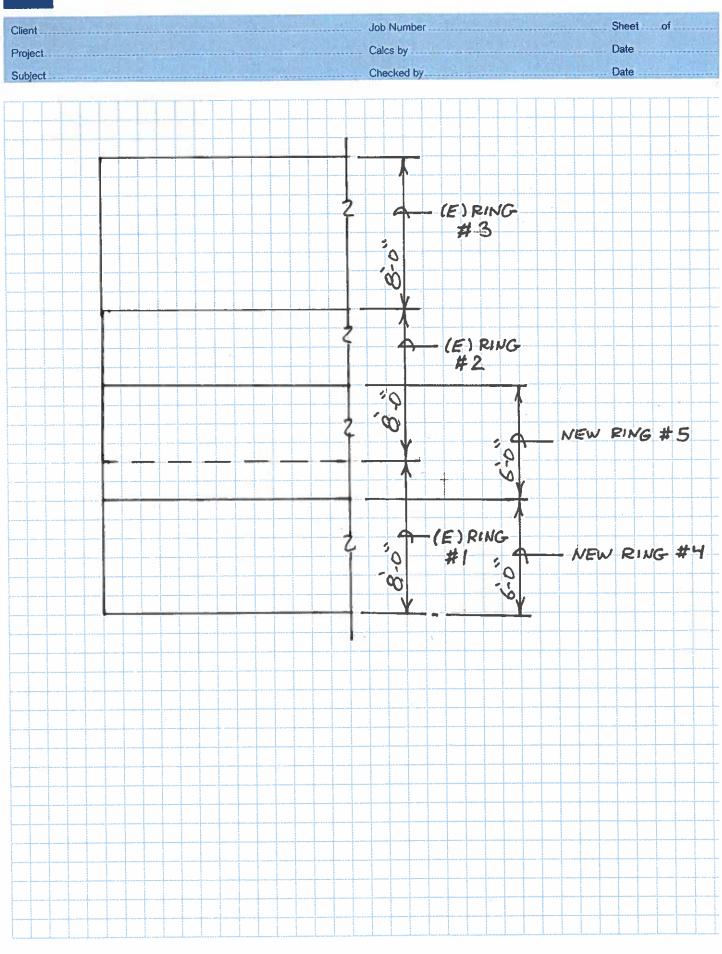
Client:	Humboldt B		Seismic Re pal Water Di		C1				Design Calculations per AWWA D100-11
*	12627733								
ank:	2MG Korbl					ما اممالی			LUATION CALCULATIONS
TEEL TANK	INDI IT DA		nce the desig RS - GROUN	in and pro		uumeu m	AVVVAD	100-11	
				0011	ORTED		1967		Year Designed
<u>Geometry an</u> D =			Tank Diame	lor		E =	1.00		Year Designed Joint Efficiency (Section 14.3.1.2)
R=	65.0		Tank Radius			DMT >=	20		Design Metal Temp [Ch 14]
Ht =	24.00		Tank Shell H			G =	1.00		Specific Gravity
H =	22.25		Liquid Heigh	+		TCL =	23.75		Top Capacity Level, overflow
Op Cap =	2.21		Nominal stor		icity	γ _L =	62.4	pcf	Unit Weight
Max Cap =	2.36		Nominal stor		-	FB =	1.75		Available Freeboard
W _T =	18,429		Weight of liq		•	erating le	vel		
		•	•			-			
<u>Seismic</u> Lat =	40.907	e .	Latitude (for	USGS D	esion Man)			
Long =	-124.064		Longitude (for			·			
Site =			Site Class, A		· ·				
S ₁ =	1.072	g	Mapped MC	E _R Spect	Response	, 1-sec, A	SCE 7-16	/USG	S
S _{DS} =	2.088	g	Spectral Acc	el, Short,	ASCE 7-1	l6 (5% da	mped) / U	SGS	
S _{D1} =	1.215		Spectral Acc						(used 7-10)
-01 TL =	8.0	-	Long period						
Group =	111	5	Seismic Use		ponoa, m	002110	, 0000		
l _e =	1.50		Seismic Use	-					[Table 21]
-									[105:0 1:1]
Anchor =	MECH		Self-Anchori	ng or Me	chanical				
Wind									
V _{3s} =		mph	Wind Veloci	ty, 3-seco	ond gust (A	SCE 7-10)]		G = 1.00 Gust Factor
	Angle		Roof Type						
Cf =	0.60		Wind Drag F			- #1) = 4			[Table 2]
Cf _R =	-0.5		Wind Drag F	-	-	n) at roo	r, average		
Kz =		nof	Velocity pres			1/1-1 15)			[Table 3]
Pw = Pw =			Wind lateral Wind roof pr	•					[Eq 3-1]
		Sec. 19		caaure, r		1=1.10)	the section of the	NT COURS	
SUMMARY (875797921	and where a				
tr =			Roof PL thic			•	135,498		Roof plate (nearly flat)
tk =		in psf	Knuckle PL Roof framing		oet)	Wrk = Wrf =	76,930	lbs	Knuckle plate (6" radius) Roof framing (estimate)
pr = +f =			Floor PL thic				212,428		Total roof steel wt
tf =	0.230			~~				103	
	Noighta					VV† =	135,498		Floor steel wt
Shell (Wall) \	veignts								
Ring		Shell PL	Weight		Ring Ht		(Ring Ht)		
No.	Ring Ht	tUSED	per Ring	Xi	* Xi	Wi*Xi	*(ti)*(Xi)		
_	(ft)	(in)	(kips)	(ft)	(ft ²)	(kips-ft)	(ft)		
3	8.0	0.348	46.4	20	1,920	929	668		
2	8.0	0.366	48.8	12	1,152	586	422		
Base	8.0	0.374	49.9	4	384	200	144		
	24.0	Ws =	145.2		3,456	1,714	1,233		
	11.8				ght of shel				

No. Ring Ht Material (Table 34) Depth Pt Elev Pt t_{BEOD} t_{USED} t_{MM} Hoop Stress Stress - (ft) - (psi) (ft)	ROSTA	FIC DESIGN	ANT ST	in the set		el Siener	Serve Alles				The man at	10.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ring Ht		tension	Fluid		Force at Design			Code		Allow Hoop Stress
3 8.0 A36 19,330 6.3 16.0 2,113 0.109 0.348 0.313 6070 1933 Base 8.0 A36 19,330 14.3 8.0 4,817 0.249 0.366 0.313 13160 1933 Base 8.0 A36 19,330 22.3 0.0 7,521 0.249 0.366 0.313 13160 1933 Base 24.0 Assume steel moterial is A35 14.3 8.0 4,817 0.249 0.366 0.313 13160 1933 Base 24.0 Assume steel moterial is A35 13.30 12.1 13.30 14.3 8.0 4.817 0.249 0.366 0.313 1016 104 Base 24.0 Assume steel moterial is A35 13.30 102.1 104 104 Base 107 Mapped MCEs Spect ratio Diameter to MOL [Eq. 3-40] 104 Issue D/H = 5.84 Aspect ratio, Diameter to MOL [Eq. 3-50]	-	(ft)	-	(psi)	(ft)	(ft)	(lbs/in)	(in)	-	(in)	(psi)	
Base 8.0 Ase 19,330 22.3 0.0 7,521 0.389 0.374 0.313 20108 1933 tes: Assume steel material is A36 Assume steel material is A36 104 104 tes: 104 380.0 lbs / in of shell height / foot of water depth op Force at Design Point = 2.6 x Hp x D x G / E = 380.0 lbs / in of shell height / foot of water depth po Force at Design Point = 2.6 x Hp x D x G / S x E [Eq. 3-40] 104 IsMic ACTIONS J/H = 5.84 Aspect ratio, Diameter to MOL. [Eq. 3-40] son = 2.09 g Spectral Accel, Spect Response, 1-sec Sos = 2.09 g Spectral Accel, Spect Response, 1-sec Son = 1.22 g Spectral Accel, Spect Response, 1-sec Sos = [Eq 13-22] T _i = 0.00 s Natural period of structure (assumed to be zero per Section 13.5) Ts = So ₁ /Sos T _c = 6.58 s Convective period [Eq 13-22] [Eq 13-22] T _t = 8.00 s Long period transition period [Sas = 0.277 g Design spectral accel, Convective, 0.5% damping [Eq 13-12] [Eq 13-13]		8.0	A36	19,330								19330
24.0104Assume steel material is A36104tit Hydrostatic Hoop Force = 2.6 x D x G / E = ap Force at Design Point = 2.6 x Hp x D x G / E(Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = (Eq. 3-40)200 Point = 2.6 x Hp x D x G / E = 									-			19330
Assume steel material is A36Assume steel material is A36anterial is A36prime steefanterial is A36Item is a first prime steefanterial is A36Item is a first prime steefanterial is A36Item is a first prime steefItem is a first pri	Base		A36	19,330	22.3	0.0	7,521	0.389	0.374	0.313	20108	
prop Force at Design Point = 2.6 x Hp x D x G / E[Eq. 3-40]ISMIC ACTIONS $D/H =$ 5.84Aspect ratio, Diameter to MOL $I_{e} =$ 1.50Importance factor $S_{1} =$ 1.07 gMapped MCE _R Spect Response, 1-sec $S_{0s} =$ 2.09 gSpectral Accel, Short, ASCE 7-10 (5% damped) $S_{D1} =$ 1.22 gSpectral Accel, Short, ASCE 7-10 (5% damped) $T_{i} =$ 0.00 sNatural period of structure (assumed to be zero per Section 13.5) $T_{s} =$ 0.58 sTransition period (Section 13.2.7.2)Ts = S _{D1} /S _{D8} $T_{c} =$ 6.58 sConvective period[Eq 13-22] $T_{c} =$ 8.00 sLong period transition periodSame (Eq 13-9) $S_{ac} =$ 0.277 gDesign spectral accel, Impulsive, 5% damping (assumes Ti=0)[Eq 13-12, 13-13] $R_{c} =$ 1.5Response Mod Factor, Impl (Anchor dependent)[Table 28] $A_{MIN} =$ 0.193 gImpulsive design accel[Eq 13-17] $A_{c} =$ 0.20 gConventive design accel[Eq 13-17] $A_{c} =$ 0.20 gConventive design accel[Eq 13-53 to 56] $d =$ 18.0 ftStosh wave height above MOL[Eq 13-52]			mate	rial is A36	=	338.0	lbs / in of	f shell heid	iht / foot of	water der	oth	10478
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	op Force a	at Design Poi	int = 2.6	х Hp x D x G	6/E				,			
$\begin{array}{ll} I_{E} = & 1.50 & \mbox{Importance factor} \\ S_{1} = & 1.07 & \mbox{g} & \mbox{Mapped MCE}_{R} \ {\mbox{Spect Response, 1-sec}} \\ S_{DS} = & 2.09 & \mbox{g} & \mbox{Spectral Accel, Short, ASCE 7-10 (5% damped)} \\ S_{D1} = & 1.22 & \mbox{Spectral Accel, 1-sec, ASCE 7-10 (5% damped)} \\ T_{i} = & 0.00 & \mbox{s} & \mbox{Natural period of structure (assumed to be zero per Section 13.5)} \\ T_{s} = & 0.58 & \mbox{s} & \mbox{Transition period (Section 13.2.7.2)} & \mbox{Ts} = S_{D1}/S_{DS} \\ T_{c} = & 6.58 & \mbox{Convective period} & \mbox{[Eq 13-22]} \\ T_{L} = & 8.00 & \mbox{s} & \mbox{Long period transition period} \\ S_{al} = & 2.09 & \mbox{g} & \mbox{Design spectral accel, Impulsive, 5% damping (assumes Ti=0)} & \mbox{[Eq 13-9]} \\ S_{ac} = & 0.277 & \mbox{g} & \mbox{Design spectral accel, Convective, 0.5% damping} & \mbox{[Eq 13-12, 13-13]} \\ R_{i} = & 3.0 & \mbox{Response Mod Factor, Impl (Anchor dependent)} & \mbox{[Table 28]} \\ R_{c} = & 1.5 & \mbox{Response Mod Factor, Conv} & \mbox{[Table 28]} \\ A_{MNN} = & 0.193 & \mbox{g} & \mbox{Impulsive design accel} & \mbox{[Eq 13-17]} \\ A_{i} = & 0.746 & \mbox{g} & \mbox{Impulsive design accel} & \mbox{[Eq 13-18]} \\ A_{i} = & 0.20 & \mbox{g} & \mbox{Convertive design accel} & \mbox{[Eq 13-18]} \\ A_{i} = & 0.20 & \mbox{g} & \mbox{Convertive design accel for sloshing} & \mbox{[Eq 13-53 to 56]} \\ d = & 18.0 & \mbox{ft} & \mbox{Slow wave height above MOL} & \mbox{[Eq 13-52]} \\ \end{array}$	ISMIC AC	TIONS	in the	de des 12	San San		- West		and set of			NY ANA STREET
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	D/H =	5.84		Aspect ratio	o, Diamete	r to MOL						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	۱ _E =	1.50		Importance	factor							
	S ₁ =	1.07	g	Mapped M	CE _R Spect	Response	e, 1-sec					
$T_i = 0.00$ sNatural period of structure (assumed to be zero per Section 13.5) $T_s = 0.58$ sTransition period (Section 13.2.7.2)Ts = S_{01}/S_{0s} $T_c = 6.58$ sConvective period[Eq 13-22] $T_L = 8.00$ sLong period transition periodSai = 2.09 g $S_{ai} = 2.09$ gDesign spectral accel, Impulsive, 5% damping (assumes Ti=0)[Eq 13-9] $S_{ac} = 0.277$ gDesign spectral accel, Convective, 0.5% damping[Eq 13-12, 13-13] $R_i = 3.0$ Response Mod Factor, Impl (Anchor dependent)[Table 28] $R_c = 1.5$ Response Mod Factor, Conv[Table 28] $A_{MN} = 0.193$ gImpulsive design accel, minimum[Eq 13-17] $A_i = 0.746$ gImpulsive design accel[Eq 13-17] $A_c = 0.20$ gConventive design accel[Eq 13-18] $A_v = 0.29$ gVertical ground motion[Section 13.5.4.3] $A_f = 0.28$ gConvective design accel for sloshing[Eq 13-53 to 56] $d = 18.0$ ftSlosh wave height above MOL[Eq 13-52]	S _{DS} =	2.09	9	Spectral Ac	cel, Short,	ASCE 7-	10 (5% da	amped)				
$T_i =$ 0.00 sNatural period of structure (assumed to be zero per Section 13.5) $T_s =$ 0.58 sTransition period (Section 13.2.7.2)Ts = S_{01}/S_{0s} $T_c =$ 6.58 sConvective period[Eq 13-22] $T_L =$ 8.00 sLong period transition periodSai = $S_{ai} =$ 2.09 gDesign spectral accel, Impulsive, 5% damping (assumes Ti=0)[Eq 13-9] $S_{ac} =$ 0.277 gDesign spectral accel, Convective, 0.5% damping[Eq 13-12, 13-13] $R_i =$ 3.0Response Mod Factor, Impl (Anchor dependent)[Table 28] $R_c =$ 1.5Response Mod Factor, Conv[Table 28] $A_{MN} =$ 0.193 gImpulsive design accel, minimum[Eq 13-17] $A_i =$ 0.746 gImpulsive design accel[Eq 13-17] $A_c =$ 0.20 gConventive design accel[Eq 13-18] $A_v =$ 0.29 gVertical ground motion[Section 13.5.4.3] $A_f =$ 0.28 gConvective design accel for sloshing[Eq 13-53 to 56] $d =$ 18.0 ftSlosh wave height above MOL[Eq 13-52]	S _{D1} =	1.22	g	Spectral Ac	cel, 1-sec	, ASCE 7-	10 (5% da	amped)				
$T_c =$ 6.58 sConvective period[Eq 13-22] $T_L =$ 8.00 sLong period transition period[Eq 13-9] $S_{ai} =$ 2.09 gDesign spectral accel, Impulsive, 5% damping (assumes Ti=0)[Eq 13-9] $S_{ac} =$ 0.277 gDesign spectral accel, Convective, 0.5% damping[Eq 13-12, 13-13] $R_i =$ 3.0Response Mod Factor, Impl (Anchor dependent)[Table 28] $R_c =$ 1.5Response Mod Factor, Conv[Table 28] $A_{c} =$ 0.193 gImpulsive design accel, minimum[Eq 13-17] $A_i =$ 0.746 gImpulsive design accel[Eq 13-17] $A_c =$ 0.20 gConventive design accel[Eq 13-18] $A_v =$ 0.29 gVertical ground motion[Section 13.5.4.3] $A_i =$ 0.28 gConvective design accel for sloshing[Eq 13-53 to 56] $d =$ 18.0 ftSlosh wave height above MOL[Eq 13-52]			s	Natural per	iod of strue	cture (ass	umed to b	e zero per	Section 1	3.5)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T, =	0.58	s	Transition p	period (Sec	ction 13.2.	.7.2)			Ts = S _{D1}	/S _{DS}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			s	Convective	period						[Eq 13-22]	
$ \begin{array}{lllllllllllllllllllllllllllllll$			s	Long period	d transition	period						
S_{ac} =0.277 gDesign spectral accel, Convective, 0.5% damping[Eq 13-12, 13-13] R_i =3.0Response Mod Factor, Impl (Anchor dependent)[Table 28] R_c =1.5Response Mod Factor, Conv[Table 28] A_{iMN} =0.193 gImpulsive design accel, minimum[Eq 13-17] A_i =0.746 gImpulsive design accel[Eq 13-17] A_c =0.20 gConventive design accel[Eq 13-18] A_v =0.29 gVertical ground motion[Section 13.5.4.3] A_f =0.28 gConvective design accel for sloshing[Eq 13-53 to 56] d =18.0 ftSlosh wave height above MOL[Eq 13-52]				•			e, 5% dar	nping (ass	umes Ti=0)	[Eq 13-9]	
$R_i =$ 3.0Response Mod Factor, Impl (Anchor dependent)[Table 28] $R_c =$ 1.5Response Mod Factor, Conv[Table 28] $A_{iMIN} =$ 0.193 gImpulsive design accel, minimum[Eq 13-17] $A_i =$ 0.746 gImpulsive design accel[Eq 13-17] $A_c =$ 0.20 gConventive design accel[Eq 13-18] $A_v =$ 0.29 gVertical ground motion[Section 13.5.4.3] $A_f =$ 0.28 gConvective design accel for sloshing[Eq 13-53 to 56] $d =$ 18.0 ftSlosh wave height above MOL[Eq 13-52]			-	Design spe	ctral accel	, Convect	ive, 0.5%	damping			(Eq 13-12, 13-	13]
R_c =1.5Response Mod Factor, Conv[Table 28] A_{iMIN} =0.193 gImpulsive design accel, minimum[Eq 13-17] A_i =0.746 gImpulsive design accel[Eq 13-17] A_c =0.20 gConventive design accel[Eq 13-18] A_v =0.29 gVertical ground motion[Section 13.5.4.3] A_f =0.28 gConvective design accel for sloshing[Eq 13-53 to 56] d =18.0 ftSlosh wave height above MOL[Eq 13-52]			-					-		[Table 2	8]	
A_{MIN} =0.193 gImpulsive design accel, minimum[Eq 13-17] A_i =0.746 gImpulsive design accel[Eq 13-17] A_c =0.20 gConventive design accel[Eq 13-18] A_v =0.29 gVertical ground motion[Section 13.5.4.3] A_f =0.28 gConvective design accel for sloshing[Eq 13-53 to 56]d =18.0 ftSlosh wave height above MOL[Eq 13-52]				-				-		Table 2	8]	
$A_i =$ 0.746 gImpulsive design accel[Eq 13-17] $A_c =$ 0.20 gConventive design accel[Eq 13-18] $A_v =$ 0.29 gVertical ground motion[Section 13.5.4.3] $A_f =$ 0.28 gConvective design accel for sloshing[Eq 13-53 to 56] $d =$ 18.0 ftSlosh wave height above MOL[Eq 13-52]	A =	0 193	a	Impulsive c	lesion acc	el minimu	m				[Ea 13-17]	
$A_c =$ 0.20 gConventive design accel[Eq 13-18] $A_v =$ 0.29 gVertical ground motion[Section 13.5.4.3] $A_f =$ 0.28 gConvective design accel for sloshing[Eq 13-53 to 56]d =18.0 ftSlosh wave height above MOL[Eq 13-52]	* NIMUN		-		- 32							
$A_v =$ 0.29 gVertical ground motion[Section 13.5.4.3] $A_f =$ 0.28 gConvective design accel for sloshing[Eq 13-53 to 56] $d =$ 18.0 ftSlosh wave height above MOL[Eq 13-52]	Δ. =		-	-	-							
Ar=0.28 gConvective design accel for sloshing[Eq 13-53 to 56]d =18.0 ftSlosh wave height above MOL[Eq 13-52]	•		-		•							4 31
d = 18.0 ft Slosh wave height above MOL [Eq 13-52]	A _c =		-				shino					
	A _c = A _v =	0.00	-		- Xa -		anny					_]
FB _{Reo'd} = 18.0 ft Required freeboard [Table 29]	A _c = A _v = A _f =			Slosh wave	e height ab	ove MOL					[Eq 13-52]	
r D _{Rea'd} – ib.u it rrequireu irecuvaru [ravic 23]	A _c = A _v = A _f =		ft									
Insufficient Freeboard	$A_{c} = A_{v} = A_{r} = A_{f} = d = d$	18.0		Popular of fr	ophoord					(Table 2	01	

AWWA D100 Steel Tank_2MG Korblex-EVALUATION.xlsm

		icipal Water District	Design Calculations per AWWA D100-11
	2627733		
SEISMIC ACTI	and the second se	oinhte	and sold and the second sold the
W _T =	<u>iic Weights and H</u> 18,429 kips	Weight of liquid ("contents")	
$W_i / W_T =$	0.20	Effective Impulsive ratio (force from "lower" constrained fluid)	[Eq 13-24, 25]
W _i , W _i =	3,642 kips	Effective Impulsive veight	(Eq 13-24, 25)
ו; = X; =	8.3 ft	Effective Impulsive weight Effective Impulsive height resultant above tank base, EBP	[Eq 13-28, 29]
$N_i = W_c / W_T =$			
	0.75	Effective Convective ratio (force from "upper" sloshing fluid)	[Eq 13-26]
W _c =	13,788 kips	Effective Convective weight	[Eq 13-26]
X _c =	11.5 ft	Effective Convective height resultant above tank base, EBP	[Eq 13-30]
	- 4		
<u>Seismic Demar</u> W _s =	145.2 kips	Tank shall woight	columns = 8,413 ft ²
$X_s = X_s =$	145.2 Kips 11.8 ft	Tank shell weight Roof area tributary to interior of Tank shell centroid Roof area tributary to perime	
∧s = Wr =	212.4 kips	Tank shell centroid Roof area tributary to perme Tank roof weight (Wr) inbutary to per	
vv, - H _t =	212.4 Kips 24.0 ft	Tank roof height	rimeter shell 77,702 IDS
$W_f =$		Tank bottom (floor) weight	
	135.5 kips	· · · •	
V _f =	4,117 kips	Design shear at top of fdn	[Eq 13-31]
M _s =	41,825 kip-ft	Design OTM at bottom of shell (EBP)	[Eq 13-23]
b =	65 ft	Tributary roof plate length along tank perimeter - assume equility	
w _{rs} =	190 plf	Weight of roof perimeter resisting OTM considering interior co	
w _t =	546 plf	Weight of tank shell and tributary roof load at perimeter	[Eq 13-41]
w _t ' =	482 plf	Effective weight at perimeter $w_t' = w_t^*(1-0.4^*Av)$	
t _b =	0.25 in	Design thickness, bottom annulus floor ring (governing thickness)	ess)
F _y =	36,000 psi	Yield strength, bottom annulus	
W _{Lmax} =	3702 plf	Limit, Weight of fluid resisting OTM, w _{Lmax} = 1.28HDG	[Eq 13-37]
w _L =	1768 plf	Weight of fluid resisting OTM	[Eq 13-37]
= L	1.10	Overturning ratio	[Eq 13-36]
L _{MAX} =	4.6 ft	Limit, Req'd width of bottom annulus	
L =	2.2 ft	Req'd bottom annulus	[Eq 13-38]
C)K		
Sliding Check			
μ =	0.58	Lower bound, Coefficient of sliding friction	
μ=	0.58	Coefficient of sliding friction	
V _{ALLOW} =	9,069 kips	Sliding resistance (capacity) to seismic shear	[Eq 13-57]
D/0 -	0.45	Domand un Consoitu, asismis alidina	
D/C =	0.45 iliding OK	Demand vs Capacity, seismic sliding	
Ŭ	inding on		

	Humboldt B	ay munic	ipai water t	JISTICE								
oject #: EISMIC STI	12627733	101-CT 11071	2	Color States	The second second		Contraction of the	Man Salara		and the state of	and the set of	6627
the second	c Stresses -	Compress	sive.		101 149281 18	A. 41 - 1 - 1		ALCOIN MILLION				20443
Anchor =		0011101000	2010	ring or Mec	hanical							
w _t " =	610	nlf		nell unit wei			$w_t^{**} = w_t^*(1)$	+0.4*Av)				
$\sigma_{c1} =$				ong't compi	-		• • •	-		[Eq 13-39]		
				ong't compi				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		[Eq 13-40]		
σ _{c2} =				Demand, Lo	-		-0 -1.0+7			[Eq 10 40]		
σ _c =			-		Sing t com	pr 30/633						
R =			Tank radiu	-	o tool: ro	dius lowe	at chall	(+/P) - 0.0	03537 (0	lass 2 mat)		
t _B /R=				I thickness t					03557 (0	1855 Z 1118()		
t/R _{Min} =				r bound t/R	per Metri	ba z (Rei	erence Uni	y)				
р = Ко =		psi	Hydrostatic Buckling co	c pressure pefficient, uj	ner limit	= 1.25				(Eg 3-17)		
FL ₁ =		-		ocal elastic	· · · · · · · · · · · · · · · · · · ·		1 (static)			[Eq 3-11, Tabl	e 11)	
$FL_2 =$		-		ocal elastic				e Only)		[Eq 3-14]	,	
$P/E)(R/t)^{2} =$			Allowable I		(Assume		•	,o only j		[Eq 13-50, 13-	511	
$\Delta C_c =$		-	Broceuro-e	tabilizing bu			-	2		[Eq 13-51]	0 1	
				ckling increa	-					[Eq 13-49]		
$\Delta \sigma_{cr} =$		psi								[Eq 13-49] [Eq 13-47]		
σ _e =	1,129	psi	Seismic all	lowable com	ipr stress	, incluain	g r.ss mure	ease		[EQ 13-47]		
		_·			•							
D/C = ank S <u>eismic</u>	0.74 c Stresses -		Compressi	ive stress de			at bottom s	shell				
	c Stresses -		Compressi			capacity	at bottom s	shell				
ank S <u>eismic</u>	<u>c Stresses -</u> 5.84					capacity Hydro-	at bottom s					
ank Seismic D/H =	<u>c Stresses -</u> 5.84 Y, Design	Tension	[Eq 13-	ive stress de		capacity Hydro- static		Seismic	Static	Total boop		
nk Seismic D/H = Ring	<u>c Stresses -</u> 5.84 Y, Design Fluid	Tension Design				capacity Hydro-	Shell PL	Seismic hoop	hoop	Total hoop σ _{static} +σ _s	D/C	
nk <u>Seismic</u> D/H = Ring No.	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth	Tension Design Pt Elev	[Eq 13- 39 to 41] Ni	ive stress de [Eq 13-42] Nc	emand vs Nh*Av	capacity Hydro- static hoop Nh	Shell PL t _{USED}	Seismic hoop σ _s	hoop σ _{static}	σ _{static} +σ _s	D/C	
nk Seismic D/H = Ring No. -	<u>c Stresses -</u> 5.84 Y, Design Fluid	Tension Design	[Eq 13- 39 to 41]	ve stress de [Eq 13-42]	emand vs	capacity Hydro- static hoop	Shell PL	Seismic hoop	hoop		D/C 	
nk Seismic D/H = Ring No.	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft)	Tension Design Pt Elev (ft)	[Eq 13- 39 to 41] Ni (Ibs/in)	[Eq 13-42] Nc (Ibs/in) 3002 2789	emand vs Nh*Av (Ibs/in) 618 1408	capacity Hydro- static hoop Nh (lbs/in) 2,113 4,817	Shell PL t _{USED} (in) 0.348 0.366	Seismic hoop σ _s (psi) 11087 14358	hoop σ _{static} (psi) 6070 13160	σ _{static} +σ _s (psi) 17,158 27,518	- 0.67 1.07	
Ring D/H =	c Stresses - 5.84 Y, Design Fluid Depth (ft) 6.25	Tension Design Pt Elev (ft) 16	[Eq 13- 39 to 41] Ni (lbs/in) 2343	[Eq 13-42] Nc (Ibs/in) 3002	emand vs Nh*Av (Ibs/in) 618	Capacity Hydro- static hoop Nh (lbs/in) 2,113	Shell PL t _{USED} (in) 0.348	Seismic hoop σ _s (psi) 11087	hoop σ _{static} (psi) 6070	σ _{static} +σ _s (psi) 17,158	- 0.67	
Ring No. - Base	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25	Tension Design Pt Elev (ft) 16 8	[Eq 13- 39 to 41] Ni (lbs/in) 2343 4225	[Eq 13-42] Nc (Ibs/in) 3002 2789	Nh*Av (Ibs/in) 618 1408	capacity Hydro- static hoop Nh (lbs/in) 2,113 4,817	Shell PL t _{USED} (in) 0.348 0.366	Seismic hoop σ _s (psi) 11087 14358	hoop σ _{static} (psi) 6070 13160	σ _{static} +σ _s (psi) 17,158 27,518	- 0.67 1.07	
Ring No. - Base	c Stresses - 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 choring	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (lbs/in) 2343 4225	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719	Nh*Av (Ibs/in) 618 1408	capacity Hydro- static hoop Nh (lbs/in) 2,113 4,817	Shell PL t _{USED} (in) 0.348 0.366	Seismic hoop σ _s (psi) 11087 14358	hoop σ _{static} (psi) 6070 13160	σ _{static} +σ _s (psi) 17,158 27,518	- 0.67 1.07	
Ank Seismic D/H = Ring No. - 3 2 Base equired And	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 <u>choring</u> 1.10	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2343 4225 4853 Overturnin	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719	Nh*Av (Ibs/in) 618 1408 2198	capacity Hydro- static hoop Nh (lbs/in) 2,113 4,817	Shell PL t _{USED} (in) 0.348 0.366	Seismic hoop σ _s (psi) 11087 14358	hoop σ _{static} (psi) 6070 13160	σ _{static} +σ _s (psi) 17,158 27,518 36,101	- 0.67 1.07	
Ank Seismic D/H = Ring No. - 3 2 Base equired And J =	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 <u>choring</u> 1.10 MECH	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2343 4225 4853 Overturnin Self-Ancho	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719 g ratio	Nh*Av (Ibs/in) 618 1408 2198	capacity Hydro- static hoop Nh (ibs/in) 2,113 4,817 7,521	Shell PL t _{USED} (in) 0.348 0.366 0.374	Seismic hoop σ _s (psi) 11087 14358	hoop σ _{static} (psi) 6070 13160	σ _{static} +σ _s (psi) 17,158 27,518 36,101	- 0.67 1.07	
Ank Seismic D/H = Ring No. - 3 2 Base equired And J = Anchor =	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 <u>choring</u> 1.10 MECH 44	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2343 4225 4853 Overturnin Self-Ancho Number of	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719 g ratio pring or Med	Nh*Av (Ibs/in) 618 1408 2198 chanical nchors arc	Hydro- static hoop Nh (ibs/in) 2,113 4,817 7,521	Shell PL tuseo (in) 0.348 0.366 0.374	Seismic hoop σ _s (psi) 11087 14358 15992	hoop σ _{static} (psi) 6070 13160 20108	σ _{static} +σ _s (psi) 17,158 27,518 36,101 [Eq 13-36]	- 0.67 1.07	
Ank Seismic D/H = Ring No. - 3 2 Base equired And J = Anchor = N =	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 <u>choring</u> 1.10 MECH 44 65.2	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2343 4225 4853 Overturnin Self-Ancho Number of	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719 g ratio pring or Mec Tension Ar of anchor cir	Nh*Av (Ibs/in) 618 1408 2198 chanical nchors arc	Hydro- static hoop Nh (ibs/in) 2,113 4,817 7,521	Shell PL tuseo (in) 0.348 0.366 0.374	Seismic hoop σ _s (psi) 11087 14358 15992	hoop σ _{static} (psi) 6070 13160 20108	σ _{static} +σ _s (psi) 17,158 27,518 36,101 [Eq 13-36]	- 0.67 1.07	
Ank Seismic D/H = Ring No. - 3 2 Base equired And J = Anchor = N = D _{ac} =	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 <u>choring</u> 1.10 MECH 44 65.2 4.7	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2343 4225 4853 Overturnin Self-Ancho Number of Diameter of	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719 g ratio pring or Mec Tension Ar of anchor cir acing	Nh*Av (Ibs/in) 618 1408 2198 chanical nchors arc	Hydro- static hoop Nh (ibs/in) 2,113 4,817 7,521	Shell PL tuseo (in) 0.348 0.366 0.374	Seismic hoop σ _s (psi) 11087 14358 15992	hoop σ _{static} (psi) 6070 13160 20108	σ _{static} +σ _s (psi) 17,158 27,518 36,101 [Eq 13-36]	- 0.67 1.07	
Ank Seismic D/H = Ring No. - - 3 2 Base Base equired And J = Anchor = N = D _{ac} = s =	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 <u>choring</u> 1.10 MECH 44 65.2 4.7 41,825	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (lbs/in) 2343 4225 4853 Overturnin Self-Ancho Number of Diameter of Anchor spi	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719 g ratio pring or Mec Tension Ar of anchor cir acing /erturning	Nh*Av (Ibs/in) 618 1408 2198 chanical nchors arc	Hydro- static hoop Nh (ibs/in) 2,113 4,817 7,521	Shell PL tuseo (in) 0.348 0.366 0.374	Seismic hoop σ _s (psi) 11087 14358 15992	hoop σ _{static} (psi) 6070 13160 20108	σ _{static} +σ _s (psi) 17,158 27,518 36,101 [Eq 13-36] tank shell	- 0.67 1.07	
ank Seismic D/H = Ring No. - 3 2 Base Base dequired And J = Anchor = N = D _{ac} = S = M _S = W' =	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 <u>choring</u> 1.10 MECH 44 65.2 4.7 41,825 223	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2343 4225 4853 Overturnin Self-Ancho Number of Diameter of Anchor spi Seismic ov W' = w _T *D	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719 g ratio pring or Mec Tension Ar of anchor cir acing /erturning	Nh*Av (Ibs/in) 618 1408 2198 chanical nchors arc	Hydro- static hoop Nh (ibs/in) 2,113 4,817 7,521	Shell PL tuseo (in) 0.348 0.366 0.374	Seismic hoop σ _s (psi) 11087 14358 15992	hoop σ _{static} (psi) 6070 13160 20108	σ _{static} +σ _s (psi) 17,158 27,518 36,101 [Eq 13-36] tank shell	- 0.67 1.07	
ank Seismic D/H = Ring No. - 3 2 Base dequired And J = Anchor = N = D _{ac} = s = M _S =	<u>c Stresses -</u> 5.84 Y, Design Fluid Depth (ft) 6.25 14.25 22.25 <u>choring</u> 1.10 MECH 44 65.2 4.7 41,825 223	Tension Design Pt Elev (ft) 16 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2343 4225 4853 Overturnin Self-Ancho Number of Diameter of Anchor spi Seismic ov W' = w _T *D	[Eq 13-42] Nc (Ibs/in) 3002 2789 2719 g ratio pring or Mec Tension Ar of anchor cir acing /erturning	Nh*Av (Ibs/in) 618 1408 2198 chanical nchors arc	Hydro- static hoop Nh (ibs/in) 2,113 4,817 7,521	Shell PL tuseo (in) 0.348 0.366 0.374	Seismic hoop σ _s (psi) 11087 14358 15992	hoop σ _{static} (psi) 6070 13160 20108	σ _{static} +σ _s (psi) 17,158 27,518 36,101 [Eq 13-36] tank shell [Eq 13-23]	- 0.67 1.07	


lient: H		voirs Seismic Retrofit Project (3 tanks) unicipal Water District	Welded Steel Water Storage Tank Design Calculations per AWWA D100-11
	- TANK EMPT	V	
HILD DEDIGIN	- many Enn r		
Vind			
V _{3s} =	85 mph	Wind Velocity, 3-second gust [Provided]	
	Angle	Roof Type	
Cf =	0.60	Wind Drag Factor, lateral	Table 2
Cf _R =	-0.50	Wind Drag Factor, uplift ("suction") at roof, a	verage
Kz =	1.09	Velocity pressure coeff	Table 3
Pw =	18.0 psf	Wind lateral pressure, ASD level	[Eq 3-1]
Pw _R =	-11.6 psf	Wind roof pressure, ASD level	
ocal shell plat	e bending / Stif	fener check	
t' =	0.325 in	Min req'd average shell PL thickness for win	d [Eq 3-36]
		Avg Shell Thickness, t' = (Pw x D^3/2 x Hs /	
t _{ave} =	0.363 in	OK	
Stability check	- Sliding - Wing	4	
<u>μ =</u>	0.58	Lower bound, Coefficient of sliding friction	
μ = μ	0.80	Coefficient of sliding friction for wind	
Fup =	-154 kips	Net uplift concurrent with lateral load (no red	luction)
Wstl =	493 kips	Total steel weight (Roof, shells, floor PL)	
V _{ALLOW_W} =	125.9 kips	Sliding resistance (capacity) to wind	$V_{ALLOW_W} = \mu^*(0.6^*Wstl+0.9^*Fup)$
V _{Wind} =	50.5 kips	Driving sliding demand, V = 0.9*Pw *A _{SIDE}	V _{WIND} = 0.9*Pw *A _{SIDE}
D/C =	0.40		
V	Vind Sliding O	K	
Stability cehck	- Overturning -	Wind	
M _{ALLOW_W} =	10,229 kip-		$M_{ALLOW W} = (0.6*Wst +0.9*Fup)*D/2$
M _{Wind} =	607 kip-		
D/C =	0.06		
	Vind Overturn	ing OK	
		Basis for design for Stability.	
		ASCE 7-10, Eq 2.4.1,Eq 7, with Except 2 an with Exception 2 and 0.6W = W	nd 0.6W = W

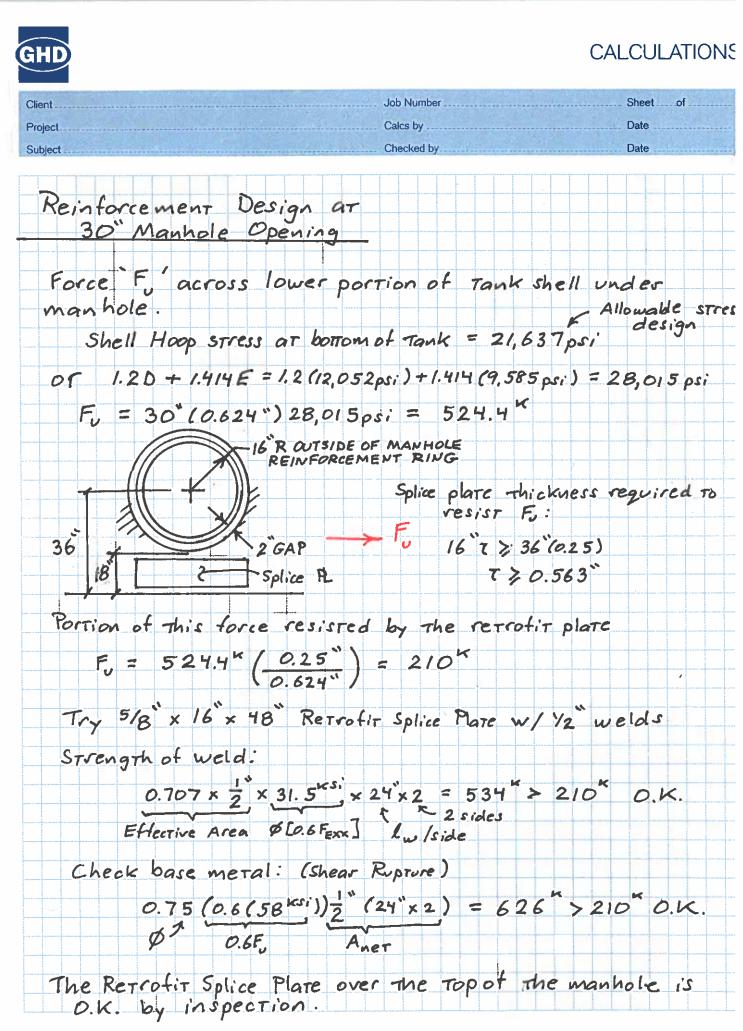
CALCULATIONS Job Number Client Sheet Project Calcs by Subject Bottom Tank Shell Supplemental Tension Reinforcement Nore: Supplemental reinforcement will have the same strain as the tank shell. Therefore, the stress in the reinforcement will be the same Capproximately because it will be located at a slightly larger tank radius) as the Tank shell. The supplemental reinforcement can not be stressed beyond the tank shell allowable stress. Tank Shell Capacity = 1.333 (19, 330psi) 1.00 = 25,767 psi Calculated Shell Demand = 36, 101 psi (Working Stress) Tank Shell Thickness = 0.374" (Asreel) provided = 0.374" (1" height) = 0.374 - in² / in height $(A_{steel})_{required} = \frac{36}{25.767} \frac{101}{p_{si}} (0.374 - \frac{10^2}{10}) = 0.524 - \frac{10^2}{10}$ (A supple mentral steel) required = 0.524 - 0.374 = 0.15 -in²/in < 0.25-in in 00 Use 1/4" Thick ASTM A36 STEEL Plate See spread sheet calculations on following pages that verify "14" shell reinforcing plate.

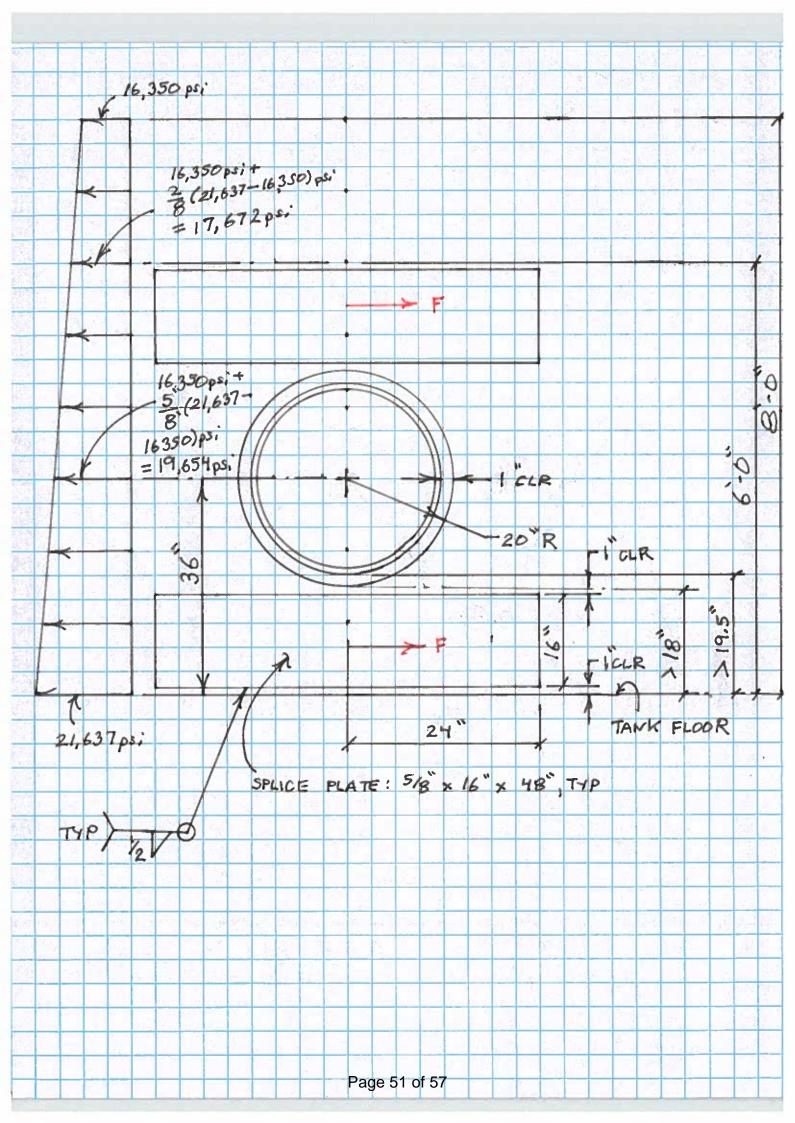
Page 43 of 57

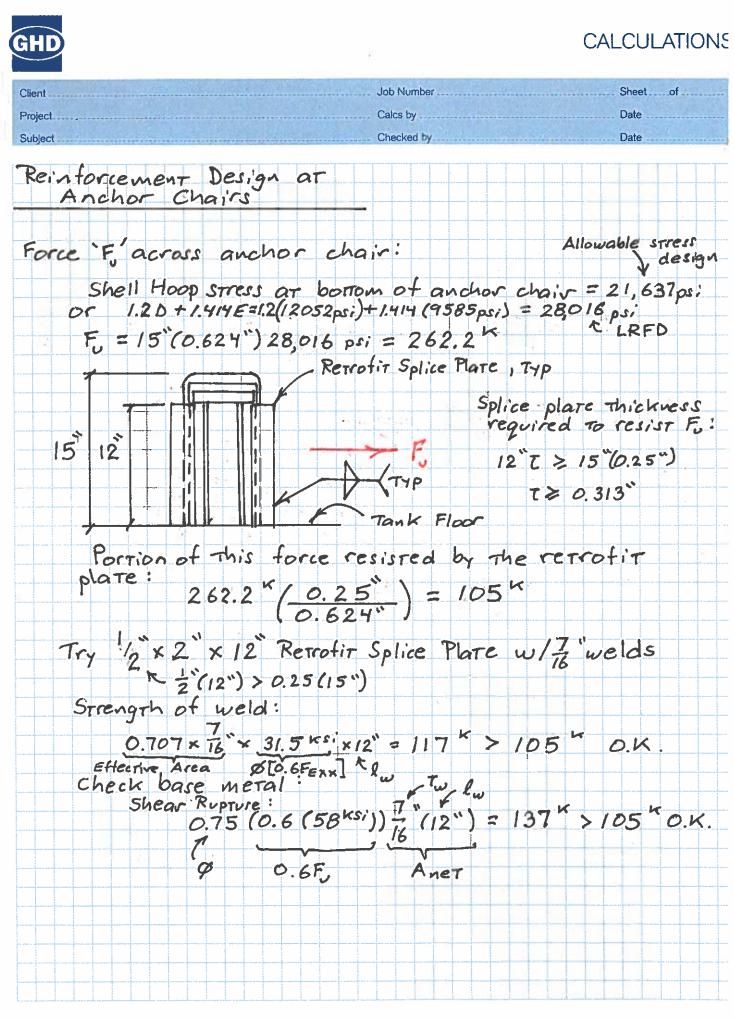
	\sim
G :	D

CALCULATIONS

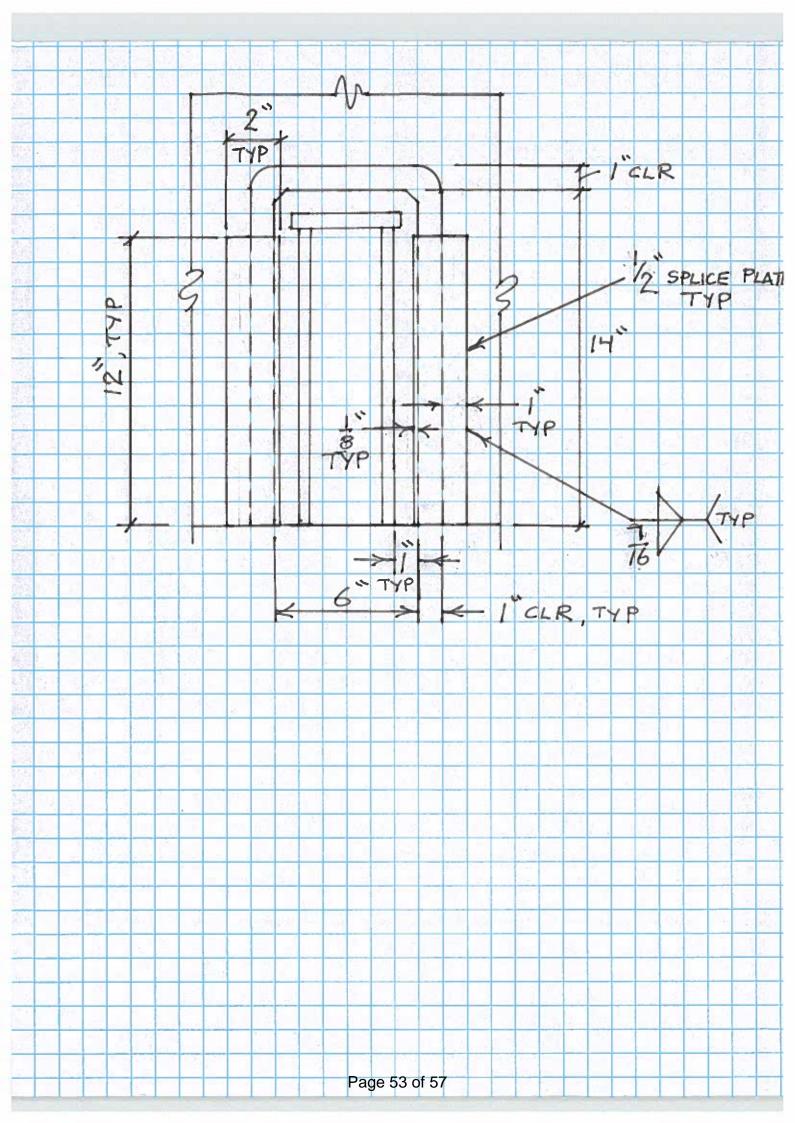
Page 44 of 57

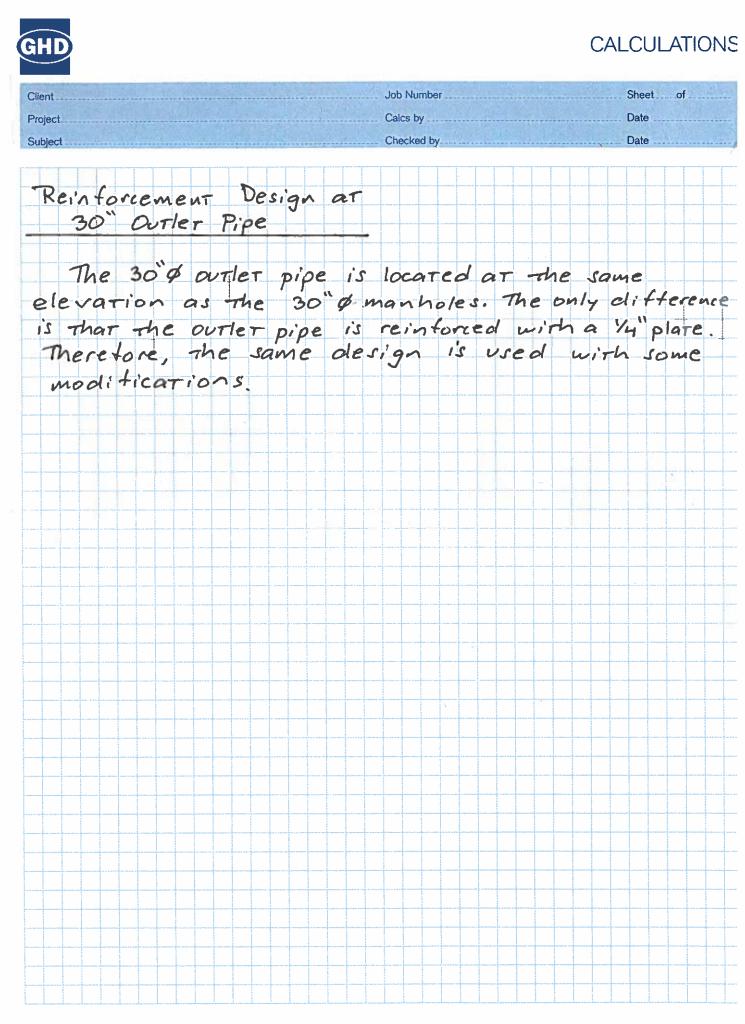

	Humboldt B 12627733	ay Munic	ipal Water Di	strict					Design Calculations per AWWA D100-11
	2627733 2MG Korbl	ax.						RF	TROFIT CALCULATIONS
			nce the desig	in and pr	ocedures o	outlined in	AWWA D		
STEEL TANK						1.648.20	-		La se a la se la se la se la seconda de l
Geometry and	Constructio	าก					1967		Year Designed
D =	130.0		Tank Diame	ter		E =	1.00	-	Joint Efficiency (Section 14.3.1.2)
R =	65.0	ft	Tank Radius	;		DMT >=	20	۰F	Design Metal Temp [Ch 14]
Ht =	24.00	ft	Tank Shell H	leight		G =	1.00	-	Specific Gravity
H =	22.25	ft	Liquid Heigh	t, MOL		TCL =	23.75	ft	Top Capacity Level, overflow
Op Cap =	2.21	MG	Nominal stor	age cap	acity	γ _L =	62.4	-	Unit Weight
Max Cap =	2.36		Nominal stor		-	FB =	1.75	ft	Available Freeboard
W _T =	18,429	kips	Weight of liq	uid ("cor	ntents"); Op	erating le	vel		
Seismic									
Lat =	40.907	•	Latitude (for						
Long =	-124.064	•	Longitude (fo		-	ap)			
Site =	D		Site Class, A				005 7 40	(1)000	
S ₁ =	1.072	_	Mapped MC		-				5
S _{DS} =	2.088	g	Spectral Acc						
S _{D1} =	1.215	g	Spectral Acc	el, 1-sec	, ASCE 7-1	16 (5% da	amped) / U	SGS	(used 7-10)
T _L =	8.0	s	Long period	transitio	n period, A	SCE 7-16	/ USGS		
Group =	10		Seismic Use	Group					
l _ε =	1.50		Seismic Use	Factor					[Table 21]
Anchor =	SELF		Self-Anchori	ng or Me	echanical				
Vind				_					
V _{3s} =	85	mph	Wind Veloci	tv. 3-sec	ond gust IA	SCE 7-10	01		G = 1.00 Gust Factor
- 35	Angle	·E · ,	Roof Type		and a second				
Cf =	0.60		Wind Drag F	actor, la	teral				[Table 2]
Cf _R =	-0.5		Wind Drag F			on") at roo	f, average		
Kz =	1.09		Velocity pres		-		-		[Table 3]
Pw =	18.0	psf	Wind lateral						[Eq 3-1]
Pw =	-11.6	psf	Wind roof pr	essure,	ASD level (l=1.15)			
SUMMARY O	F STEEL P	LATE W	EIGHTS	NR ABL			SHS MARTIN	11	
tr =	0.250	in	Roof PL thic	k		Wrp =	135,498	lbs	Roof plate (nearly flat)
tk =	0.250	in	Knuckle PL	thick		Wrk =	0	lbs	Knuckle plate (6" radius)
pr =		psf	Roof framing	-	(est)	Wrf =	76,930		Roof framing (estimate)
tf =	0.250	in	Floor PL thic	ck		Wr =	212,428	lbs	Total roof steel wt
						Wf =	135,498		Floor steel wt
Shell (Wall) W	eights /								
Dian		01.11.51	Maisht		Dine L4		(D)		
Ring No.	Ring Ht	Shell PL	Weight per Ring	N/1	Ring Ht * Xi	LATINAT	(Ring Ht) *(ti)*(Xi)		
NU.		tused		Xi		Wi*Xi			
-	(ft)	(in)	(kips)	(ft)	(ft ²)	(kips-ft)	(ft)		
3	8.0	0.348	46.4	20 14	1,920 672	929 342	668 246		
2 1.5	4.0	0.366	24.4	2	96		246		
Base	8.0	0.624	83.2	4	384	333	240		
	24.0	Ws =			3,072		1,213	•	

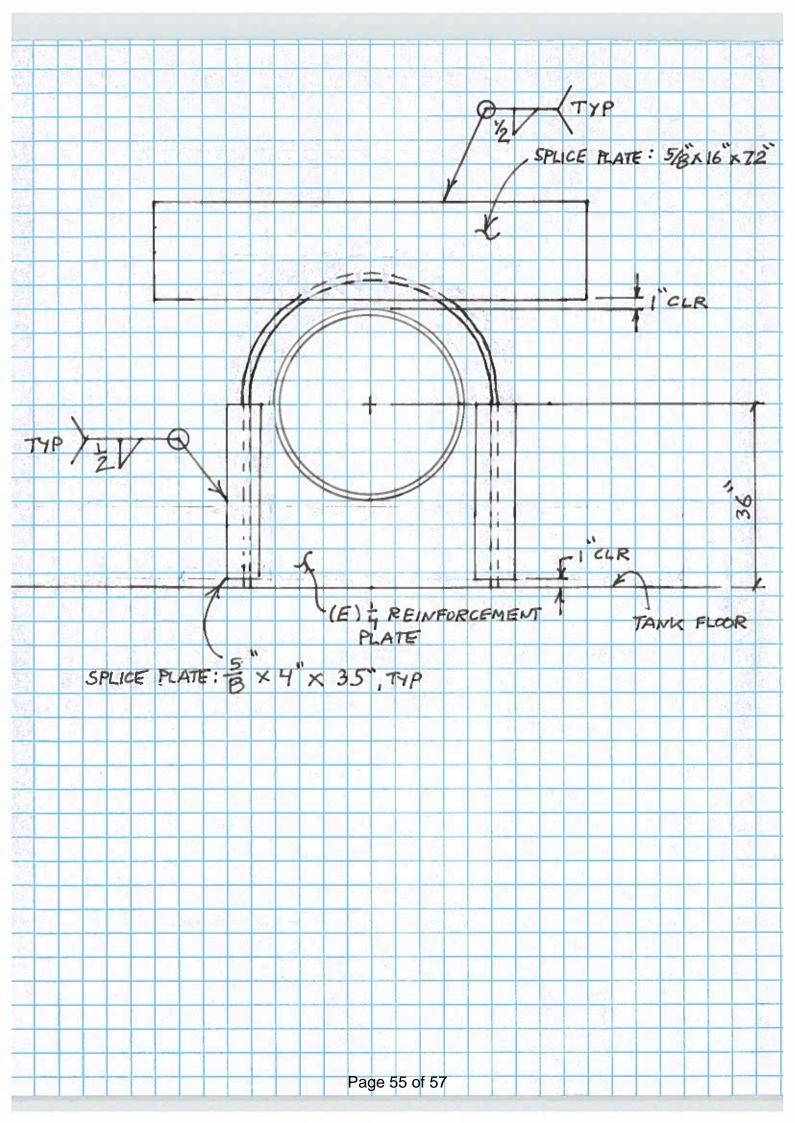

URU	STAT	IC DESIGN	L parties			Presenter and		al sure and	Section and		A CALE	and the state
	ling No.	Ring Ht	Steel Material	Max unit tension [Table 34]	Design Fluid Depth	Design Pt Elev	Hoop Force at Design Pt	Shell PL t _{REQ'D}	Shell PL t _{USED}	Shell PL Code t _{MIN}	Shell PL Hoop Stress	Allow Hoop Stress
	-	(ft)	-	(psi)	(ft)	(ft)	(lbs/in)	(in)	(in)	(in)	(psi)	(psi)
i	3	8.0	A36	19,330	6.3	16.0	2,113	0.109	0.348	0.313	6070	19330
	2	4.0	A36	19,330	10.3	12.0		0.179	0.366	0.313	9466	19330
1	1.5	4.0	A36	19,330	14.3	-	4,817	0.249	0.616	0.313	7819	19330
B	ase	8.0	A36	19,330	22.3	0.0	7,521	0.389	0.624	0.313	12052	19330
es:		24.0		me steel rial is A36								62%
	drosta	tic Hoop For	rce = 2.6	xDxG/E	=	338.0	lhs / in o	f shell heic	ht / foot of	water den	th	
		•		x Hp x D x G		000.0		. Shon doig				
				x D x G / s		[Eq. 3-40)]					
						(
SMI	C ACI	TIONS	操業					Pier Mary	Sold States		and standards	1. C. S.
C	D/H =	5.84		Aspect ratio	. Diamete	r to MOL						
-	l _E =	1.50		Importance								
	S ₁ =	1.07	0	Mapped MC		Response	a 1-sec					
		2.09	-	Spectral Ac				amped)				
	S _{DS} =		-				•	• •				
;	S _{D1} =	1.22	-	Spectral Ac								
	T, =	0.00		Natural per				e zero pei	r Section 13			
	T _s =	0.58		Transition p	eriod (Sec	ction 13.2.	7.2)			Ts = S _{D1}		
	T _c ≕	6.58	S	Convective	period						[Eq 13-22]	
	T _L =	8.00	s	Long period	transition	period						
	S _{ai} =	2.09	g	Design spe	ctral accel	, Impulsiv	e, 5% dar	nping (ass	umes Ti=0)	[Eq 13-9]	
	S _{ac} =	0.277	-	Design spe							[Eq 13-12, 13-	13]
	R _i =	2.5	3	Response I						[Table 28		
		1.5		Response I				ondony		(Table 28	-	
	R _c =	1.0		Response							J	
A	4 _{MIN} =	0.232	9	Impulsive d	esign acco	el, minimu	m				[Eq 13-17]	
	A _i =	0.895	g	Impulsive d	esign acco	el					(Eq 13-17)	
	A _c =	0.20	g	Conventive	design ac	cel					[Eq 13-18]	
	A _v =	0.29		Vertical gro	_						[Section 13.5.4	4.3]
	A _f =	0.28	-	Convective			shina				- [Eq 13-53 to 5	•
			-		-							-
	d =	18.0	π	Slosh wave	neight ab	ove MOL					[Eq 13-52]	
		49.0	ft	Required fr	eeboard					(Table 2	9]	
FB	Reg'd =	18.0								-	-	
FB _F	Req'd =	no.u Insufficient		ard								

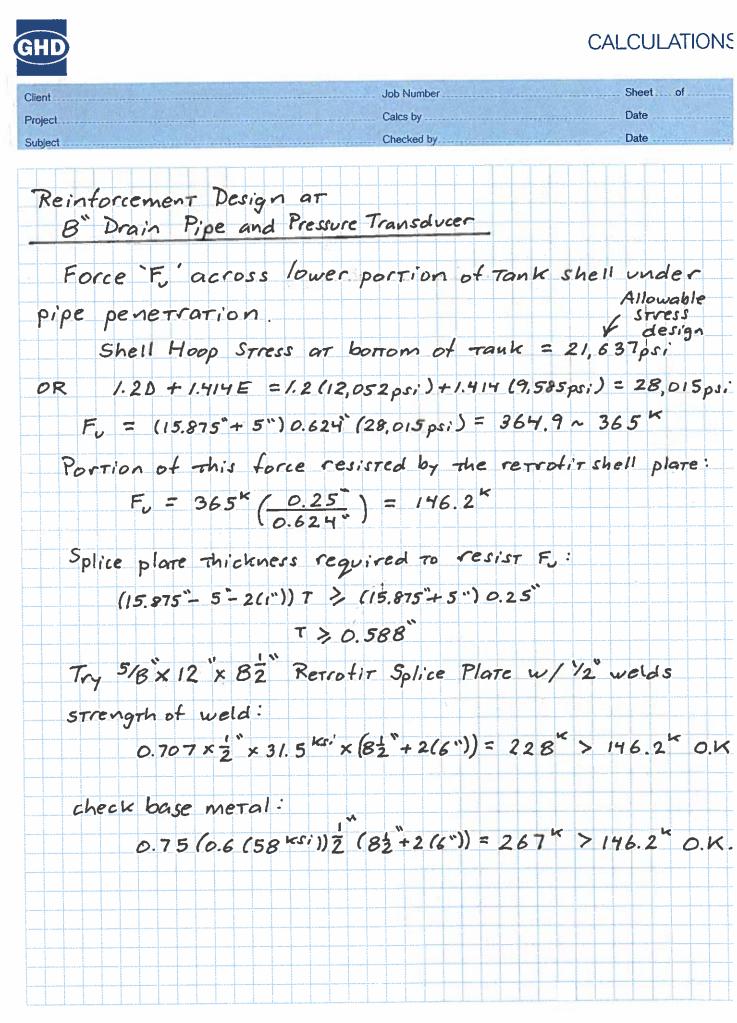

	2627733			
EISMIC ACTIO		The second s	A share the state of the	the second second second
	ic Weights and He			
W _T =	18,429 kips	Weight of liquid ("contents")		
$W_i/W_T =$	0.20	Effective Impulsive ratio (force from "lower" co	instrained fluid)	[Eq 13-24, 25]
W _i =	3,642 kips	Effective Impulsive weight		[Eq 13-24, 25]
$X_i =$	8.3 ft	Effective Impulsive height resultant above tan	k base, EBP	[Eq 13-28, 29]
$W_c/W_T =$	0.75	Effective Convective ratio (force from "upper"	sloshing fluid)	[Eq 13-26]
W _ =	13,788 kips	Effective Convective weight		[Eq 13-26]
X _c =	11.5 ft	Effective Convective height resultant above ta	nk base, EBP	[Eq 13-30]
eismic Deman	nd			8
W _s =	195.2 kips	Tank shell weight Roof area trib	utary to interior columns =	8,413 ft
X _s =	8.6 ft	Tank shell centroid Roof area trit	outary to perimeter shell =	4,860 ft [∡]
W, =	212.4 kips	Tank roof weight	(Wr)tributary to perimeter shell =	77,782 lbs
H _t =	24.0 ft	Tank roof height	71	
W _f =	135.5 kips	Tank bottom (floor) weight		
V ₁ =	4,633 kips	Design shear at top of fdn		[Eq 13-31]
M _s =	45,675 kip-ft	Design OTM at bottom of shell (EBP)		[Eq 13-23]
	65 ft	Tributary roof plate length along tank perimeter		
b = w _{rs} =	190 plf	Weight of roof perimeter resisting OTM consid		20103
$w_{rs} = w_t =$	668 plf	Weight of tank shell and tributary roof load at		[Eq 13-41]
w _t ' =	590 plf	•	: w _t *(1-0.4*Av)	
	0.25 in	Design thickness, bottom annulus floor ring (g	19	
t _b =		Yield strength, bottom annulus	Greening (monicaa)	
F _y =	36,000 psi	Limit, Weight of fluid resisting OTM, $w_{Lmax} = 1$	28HDG	[Eq 13-37]
w _{Lmax} =	3702 plf			[Eq 13-37]
w _L =	1768 plf	Weight of fluid resisting OTM		• • •
= L	1.15	Overturning ratio		[Eq 13-36]
L _{MAX} =	4.6 ft	Limit, Req'd width of bottom annulus		IE a 12 291
L=	2.2 ft	Req'd bottom annulus		[Eq 13-38]
0				
<u>βliding Check</u> μ =	0.58	Lower bound, Coefficient of sliding friction		
μ=	0.58	Coefficient of sliding friction		
V _{ALLOW} =	9,094 kips	Sliding resistance (capacity) to seismic shear		[Eq 13-57]
D/C =	0.51	Demand vs Capacity, seismic sliding		
3	liding OK			

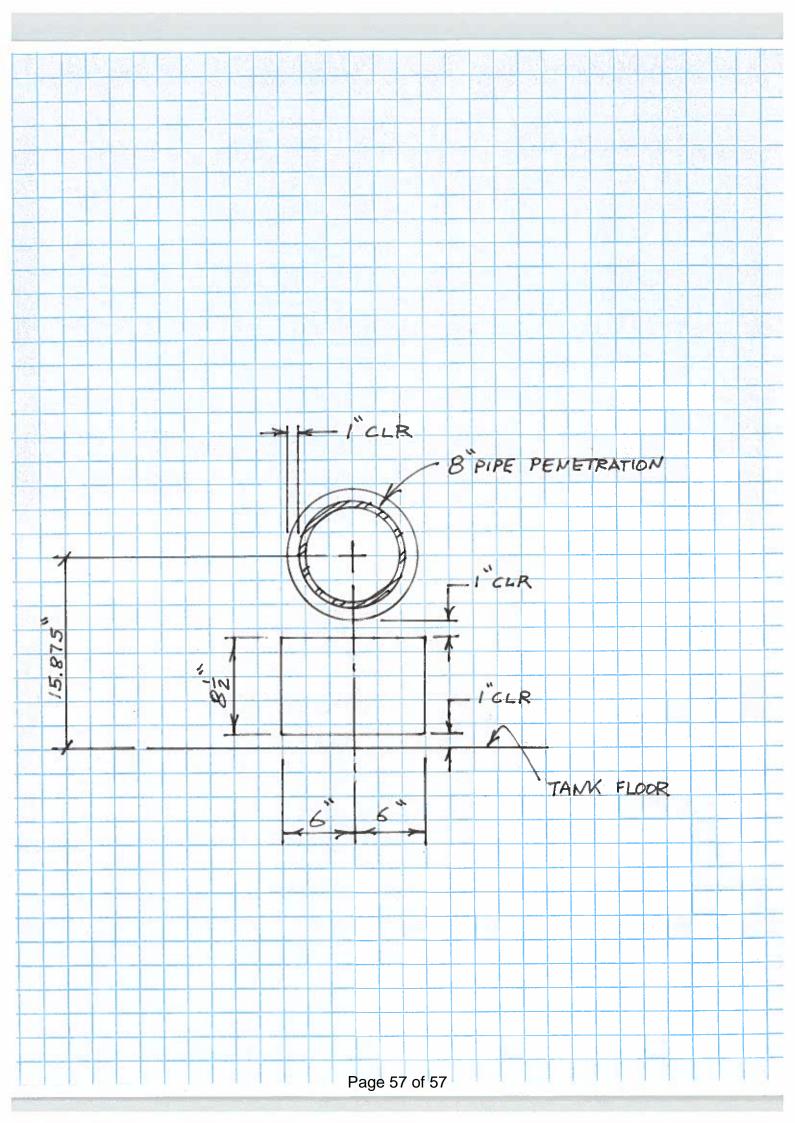
Trata at dis	40007700												
Project #: SEISMIC STR	12627733		12 11 10	VANSAL TO P	1. S. C. L.				0.000	THE TRANSPORT			
Fank Seismic		Compress	sive	And a second					and the second street	Concernance and a second			
Anchor =				oring or Mecl	hanical								
w _l " =	747	÷		hell unit weig			$w_{t}^{"} = w_{t}^{*}(1)$	+0.4*Av)					
σ _{c1} =	559	÷		.ong't compr	-		• • • •	-		[Eq 13-39]			
σ _{c2} =	719	1		ong't compr	•			,		[Eq 13-40]			
σ _c =	719			Demand, Lo			,						
R =	780		Tank radiu		g								
t _B /R=	0.000800			s I thickness t	o tank rai	dius lowe	est shell	(t/R), = 0.0	03537 (C	lass 2 mat)			
t/R _{Min} =	0.0010	-		r bound t/R						·····,			
p =					per mean			<i>31</i>					
Ko =	1.25		Hydrostatic pressure Buckling coefficient, upper limit = 1.25							[Eq 3-17]			
FL ₁ =	1,445	-	-	local elastic			1 (static)			(Eq 3-11, Table	e 11]		
FL ₂ =	1,806	e		local elastic	•		•	e Only)		[Eq 3-14]			
(P/E)(R/t) ² =	0.52	+			[Assume			• •		[Eq 13-50, 13-	51]		
$\Delta C_c =$	0.16	÷.	Pressure-s	stabilizing bu	•		-	2		[Eq 13-51]	-		
Δσ _{cr} =		+		ckling increa	-					[Eq 13-49]			
σ _e =		41		lowable com						(Eq 13-47)			
0e	4,402	por	Ocidinito un		ipi 00.000	, moraann	9 1100 11101	0000		[-4.14.11]			
D/C = [•] ank Seismic D/H =	<u>: Stresses -</u>		Compressi	ive stress de	emand vs	capacity	at bottom :	shell					
<u>Fank Seismic</u> D/H = Ring	5.84 Y, Design Fluid	<u>Tension</u> Design	[Eq 13- 39 to 41]	[Eq 13-42]		Hydro- static hoop	Shell PL	Seismic hoop	Static	Total hoop			
^r ank <u>Seismic</u> D/H =	5.84 5.84 Y, Design Fluid Depth	Tension Design Pt Elev	[Eq 13- 39 to 41] Ni	[Eq 13-42] Nc	Nh*Av	Hydro- static hoop Nh	Shell PL t _{USED}	Seismic hoop ơs	hoop σ _{static}	$\sigma_{static} + \sigma_s$	D/C		
ank Seismic D/H = Ring No. -	5.84 5.84 Y, Design Fluid Depth (ft)	Tension Design Pt Elev _(ft)	[Eq 13- 39 to 41] Ni (Ibs/in)	[Eq 13-42] Nc (lbs/in)	Nh*Av (Ibs/in)	Hydro- static hoop Nh (lbs/in)	Shell PL t _{USED} (in)	Seismic hoop σ _s (psi)	hoop σ _{static} (psi)	σ _{static} +σ _s (psi)	+		
Tank Seismic D/H = Ring No. - 3	5.84 Y, Design Fluid Depth (ft) 6.25	Tension Design Pt Elev (ft) 16	[Eq 13- 39 to 41] Ni (Ibs/in) 2812	[Eq 13-42] Nc (lbs/in) 3002	Nh*Av (lbs/in) 618	Hydro- static hoop Nh (lbs/in) 2,113	Shell PL t _{USED} (in) 0.348	Seismic hoop σ _s (psi) 11953	hoop σ _{static} (psi) 6070	σ _{static} +σ _s (psi) 18,024	0.70		
Tank Seismic D/H = Ring No. - 3 2	Stresses - 5.84 Y, Design Fluid Depth (ft) 6.25 10.25	Tension Design Pt Elev (ft) 16 12	[Eq 13- 39 to 41] Ni (Ibs/in)	[Eq 13-42] Nc (lbs/in)	Nh*Av (Ibs/in)	Hydro- static hoop Nh (lbs/in)	Shell PL t _{USED} (in)	Seismic hoop σ _s (psi)	hoop σ _{static} (psi)	σ _{static} +σ _s (psi)	+	C	
Tank Seismic D/H = Ring No. - 3	5.84 Y, Design Fluid Depth (ft) 6.25	Tension Design Pt Elev (ft) 16	[Eq 13- 39 to 41] Ni (Ibs/in) 2812 4130	[Eq 13-42] Nc (lbs/in) 3002 2877	Nh*Av (Ibs/in) 618 1013	Hydro- static hoop Nh (lbs/in) 2,113 3,465	Shell PL t _{USED} (in) 0.348 0.366	Seismic hoop σ _s (psi) 11953 14027	hoop σ _{static} (psi) 6070 9466	σ _{static} +σ _s (psi) 18,024 23,493	0.70 0.91	0	
Tank Seismic D/H = Ring No. - 3 2 1.5 Base	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25	Tension Design Pt Elev (ft) 16 12 8	[Eq 13- 39 to 41] Ni (lbs/in) 2812 4130 5071	[Eq 13-42] Nc (lbs/in) 3002 2877 2789	Nh*Av (Ibs/in) 618 1013 1408	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817	Shell PL t _{USED} (in) 0.348 0.366 0.616	Seismic hoop σ _s (psi) 11953 14027 9668	hoop σ _{static} (psi) 6070 9466 7819	σ _{static} +σ _s (psi) 18,024 23,493 17,487	0.70 0.91 0.68	0	
Tank Seismic D/H = Ring No. - 3 2 1.5 Base Required Anc	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25	Tension Design Pt Elev (ft) 16 12 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2812 4130 5071 5823	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719	Nh*Av (Ibs/in) 618 1013 1408	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817	Shell PL t _{USED} (in) 0.348 0.366 0.616	Seismic hoop σ _s (psi) 11953 14027 9668	hoop σ _{static} (psi) 6070 9466 7819	σ _{static} +σ _s (psi) 18,024 23,493 17,487 22,937	0.70 0.91 0.68	0	
Tank Seismic D/H = Ring No. - 3 2 1.5 Base Required Anc J =	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25 choring 1.15	Tension Design Pt Elev (ft) 16 12 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2812 4130 5071 5823 Overturnin	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719	Nh*Av (lbs/in) 618 1013 1408 2198	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817	Shell PL t _{USED} (in) 0.348 0.366 0.616	Seismic hoop σ _s (psi) 11953 14027 9668	hoop σ _{static} (psi) 6070 9466 7819	σ _{static} +σ _s (psi) 18,024 23,493 17,487	0.70 0.91 0.68	0	
Tank Seismic D/H = Ring No. - 3 2 1.5 Base Required Anc	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25 22.25 22.25	Tension Design Pt Elev (ft) 16 12 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2812 4130 5071 5823 Overturnin Self-Ancho	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719	Nh*Av (lbs/in) 618 1013 1408 2198 thanical	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817 7,521	Shell PL t _{USED} (in) 0.348 0.366 0.616 0.624	Seismic hoop σ _s (psi) 11953 14027 9668	hoop σ _{static} (psi) 6070 9466 7819	σ _{static} +σ _s (psi) 18,024 23,493 17,487 22,937	0.70 0.91 0.68	0	
Tank Seismic D/H = Ring No. - 3 2 1.5 Base Required And J = Anchor = N =	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25 22.25 24.25 22.25	Tension Design Pt Elev (ft) 16 12 8 0	[Eq 13- 39 to 41] Ni (lbs/in) 2812 4130 5071 5823 Overturnin Self-Ancho Number of	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719 2719	Nh*Av (lbs/in) 618 1013 1408 2198 chanical inchors arc	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817 7,521	Shell PL t _{USED} (in) 0.348 0.366 0.616 0.624	Seismic hoop σ_s (psi) 11953 14027 9668 10885	hoop σ _{atatic} (psi) 6070 9466 7819 12052	σ _{static} +σ _s (psi) 18,024 23,493 17,487 22,937 [Eq 13-36]	0.70 0.91 0.68	0	
Tank Seismic D/H = Ring No. - 3 2 1.5 Base Required Anc J = Anchor =	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25 Choring 1.15 SELF 44 65.2	Tension Design Pt Elev (ft) 16 12 8 0	[Eq 13- 39 to 41] Ni (lbs/in) 2812 4130 5071 5823 Overturnin Self-Ancho Number of	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719 ag ratio pring or Mec f Tension Ar of anchor cir	Nh*Av (lbs/in) 618 1013 1408 2198 chanical inchors arc	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817 7,521	Shell PL t _{USED} (in) 0.348 0.366 0.616 0.624	Seismic hoop σ_s (psi) 11953 14027 9668 10885	hoop σ _{atatic} (psi) 6070 9466 7819 12052	σ _{static} +σ _s (psi) 18,024 23,493 17,487 22,937 [Eq 13-36]	0.70 0.91 0.68		
Tank Seismic D/H = Ring No. - 3 2 1.5 Base Required Anc J = Anchor = N = D _{ac} = s =	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25 choring 1.15 SELF 44 65.2 4.7	Tension Design Pt Elev (ft) 16 12 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2812 4130 5071 5823 Overturnin Self-Ancho Number of Diameter of Anchor sp	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719 ag ratio pring or Mec f Tension Ar of anchor cir acing	Nh*Av (lbs/in) 618 1013 1408 2198 chanical inchors arc	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817 7,521	Shell PL t _{USED} (in) 0.348 0.366 0.616 0.624	Seismic hoop σ_s (psi) 11953 14027 9668 10885	hoop σ _{atatic} (psi) 6070 9466 7819 12052	σ _{static} +σ _s (psi) 18,024 23,493 17,487 22,937 [Eq 13-36] tank shell	0.70 0.91 0.68	0	
Tank Seismic D/H = Ring No. - 3 2 1.5 Base Required Anc J = Anchor = N = D _{ac} = s = M _S =	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25 Choring 1.15 SELF 44 65.2 4.7 45,675	Tension Design Pt Elev (ft) 16 12 8 0	[Eq 13- 39 to 41] Ni (Ibs/in) 2812 4130 5071 5823 Overturnin Self-Ancho Number of Diameter of Anchor sp Seismic ov	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719 ag ratio pring or Meo f Tension Ar of anchor cir acing verturning	Nh*Av (lbs/in) 618 1013 1408 2198 chanical inchors arc	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817 7,521	Shell PL t _{USED} (in) 0.348 0.366 0.616 0.624	Seismic hoop σ_s (psi) 11953 14027 9668 10885	hoop σ _{atatic} (psi) 6070 9466 7819 12052	σ _{static} +σ _s (psi) 18,024 23,493 17,487 22,937 [Eq 13-36]	0.70 0.91 0.68	0	
Tank Seismic D/H = Ring No. - 3 2 1.5 Base Required Anc J = Anchor = N = D _{ac} = S = M _S = W' =	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25 Choring 1.15 SELF 44 65.2 4.7 45,675 273	Tension Design Pt Elev (ft) 16 12 8 0 0	[Eq 13- 39 to 41] Ni (lbs/in) 2812 4130 5071 5823 Overturnin Self-Ancho Number of Diameter of Anchor sp Seismic ov W' = w _T *D	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719 ag ratio pring or Meo f Tension Ar of anchor cir acing verturning	Nh*Av (lbs/in) 618 1013 1408 2198 chanical inchors arc	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817 7,521	Shell PL t _{USED} (in) 0.348 0.366 0.616 0.624	Seismic hoop σ_s (psi) 11953 14027 9668 10885	hoop σ _{atatic} (psi) 6070 9466 7819 12052	σ _{static} +σ _s (psi) 18,024 23,493 17,487 22,937 [Eq 13-36] tank shell [Eq 13-23]	0.70 0.91 0.68	0	
Tank Seismic D/H = Ring No. - - 3 2 1.5 Base 2 1.5 Base Required Anc J = Anchor = N = D _{ac} = s = M _S =	5.84 Y, Design Fluid Depth (ft) 6.25 10.25 14.25 22.25 Choring 1.15 SELF 44 65.2 4.7 45,675 273 N/A	Tension Design Pt Elev (ft) 16 12 8 0 0 2 ft ft kips kips per	[Eq 13- 39 to 41] Ni (lbs/in) 2812 4130 5071 5823 Overturnin Self-Ancho Number of Diameter of Anchor sp Seismic ov W' = w _T *D	[Eq 13-42] Nc (lbs/in) 3002 2877 2789 2719 ag ratio pring or Mec f Tension Ar of anchor cir acing verturning *pi	Nh*Av (lbs/in) 618 1013 1408 2198 chanical inchors arc	Hydro- static hoop Nh (lbs/in) 2,113 3,465 4,817 7,521	Shell PL t _{USED} (in) 0.348 0.366 0.616 0.624	Seismic hoop σ_s (psi) 11953 14027 9668 10885	hoop σ _{atatic} (psi) 6070 9466 7819 12052	σ _{static} +σ _s (psi) 18,024 23,493 17,487 22,937 [Eq 13-36] tank shell	0.70 0.91 0.68	0	


lient: H	umboldt Bay Mu	oirs Seismic Retrofit Project (3 tanks) nicipal Water District	Welded Steel Water Storage Tank Design Calculations per AWWA D100-11
	2627733		
IND DESIGN	- TANK EMPTY		and the second
Vind			
V _{3s} =	85 mph	Wind Velocity, 3-second gust [Provided]	
- 35	Angle	Roof Type	
Cf =	0.60	Wind Drag Factor, lateral	Table 2
Cf _R =	-0.50	Wind Drag Factor, uplift ("suction") at roof, ave	rage
Kz =	1.09	Velocity pressure coeff	Table 3
Pw =	18.0 psf	Wind lateral pressure, ASD level	[Eq 3-1]
Pw _R =	-11.6 psf	Wind roof pressure, ASD level	
ocal shell plate	e bending / Stiffe	ner check	
ť' =	0.325 in	Min req'd average shell PL thickness for wind [Avg Shell Thickness, t' = (Pw x D^3/2 x Hs / 10	
t _{ave} =	0.385 in	OK	0.025 x 10-0) * 2/3
	- Sliding - Wind		
μ=	0.58	Lower bound, Coefficient of sliding friction	
μ=	0.80	Coefficient of sliding friction for wind	tion)
Fup = Wstl =	-154 kips 543 kips	Net uplift concurrent with lateral load (no reduc Total steel weight (Roof, shells, floor PL)	
VVSU =	149.9 kips	Sliding resistance (capacity) to wind	$V_{ALLOW} = \mu^*(0.6^*Wstl+0.9^*Fup)$
V _{Wind} =	50.5 kips	Driving sliding demand, $V = 0.9^{\circ}Pw^{\circ}A_{SIDE}$	V _{WIND} = 0.9*Pw *A _{SIDE}
Wind =	0.34	Driving siding demand, Y = 0.0 T W ASIDE	WIND 0.0 W Habe
	Vind Sliding OK		
Stahility cehck	- Overturning - V	Vind	
M _{ALLOW W} =	12,180 kip-ft		M _{ALLOW W} = (0.6*Wstl+0.9*Fup)*D/2
M _{Wind} =	607 kip-ft		
D/C =	0.05		
	Vind Overturnin	g OK	
		Basis for design for Stability:	
		ASCE 7-10, Eq 2.4.1, Eq 7, with Except 2 and 6	0.6W = W
		with Exception 2 and 0.6W = W	
	5		






Page 52 of 57



Page 54 of 57

